
RO-1S4 127 COMPARISON OF POSCAL MUD THE DORSE III PLUS LANGURGE IN I/3
PIOGNUING AN INVENTORY NRNAGENENT SYSTEM(U) NAVAIL
POSTORfIMTE SCHOOL MONTEREY CA T CHANO JUN 87

WNISSIFIED F/O 12/5 N

*1.1 L2A

I~
MACRMY)PY RFAF~IIITIO#' TEST CHART

~~ w W - jw -As v41 W ~ ~ W
*a %% *

elld

OJiCl tiLt. iLU :

NAVAL POSTGRADUATE SCHOOL
NMonterey, California

00

* <

THESIS
COMPARISON OF PASCAL AND THE

-DBASE III PLUS LANGUAGE IN PROGRAMMING
AN INVENTORY MANAGEMENT SYSTEM

by

To Chang

June 1987

Thesis Advisor: C. Thomas Wu

Approved for public release; distribution is unlimited.

Ax

* ~~~ 87 9 1 2R

unclassif ied
SECURITY CLASSIFICATION OF THIS PAGE i>/'& ..- /

7 REPORT DOCUMENTATION PAGE
1II REPORT SECURITY CLASSIFICATION lb RESTRICTIVE MARKINGS

unclassified____________________
2a SECURITY CLASSIFICATION AUTHORITY I DISTRIBUTION*/AVAILABILITY OF REPORT

Approved for public release;
2 b DECLASSIFICATIONIDOWNGRADING SCHEDULE distribution is unlimited.

4 PERFORMING ORGANIZATION REPORT NUMBER(S) 5 MONITORING ORGANIZATION REPORT NUMBER(S)

6a NAME OF PERFORMING ORGANIZATION 6b OFFICE SYMBOL 76 NAME OF MONITORING ORGANIZATION

Naval Postgraduate Schoo (if applicable) Naval Postgraduate School
__ __ __ _ __ __ _ __ _ 1_ 52 __ _ _ _ _ _ _ _ _ __ _ _ _ _ _ _ _ _ _

6C ADDRESS (City, Stare. and ZIP Code) ?b ADORESS(City. Stare., and ZIP Code)

Monterey, California 93943-5000 Monterey, California 93943-5000

Sa NAME Of FUNDINGiSPONSORIAIG lb OFFICE SYMBOL 9 PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER
ORGANIZATION I (if apoiecaboe)

BC ADDRE SS (City, State* and ZIP Code) 10 SOURCE OF FUNDING NUMBERS
PROGRAM PROJECT TASK WORK UNIT-
ELEMENT NO NO NO ~ ACCESSION NO

11 T;TLE.(ncIde ScuroSVCI.UJ#.iCat J COPRISON OF PASCAL AND THE DBASE III PLUS LANGUAGE

IN PROGRAMMING AN INVENTORY MANAGEMENT SYSTEM
'~PERSONA%. AUTH.OR(S)

Chang. To
()IE T 3bROT1ME COVERED O 14 1 fiOFRPORT (Year. Month Dy) 15PAGE COi.,NT

6 SLP-'LC(ENTARY NOTATION

COSATI CODES lB SUBJECT TERMS (Continue on reverse if necessary and identify by block number)

gELD GROUP ISUB*GROUP database management systems (DBMS); inventory
management program; dBase III PLUS

9 ABSTRACT (Continlue on reverse iof nec*uary and identify by1 block number)

Before the widespread use of Database Management Systems (DBMS), pro- p

grammers have had to rely on the third generation language such as
COBOL, Pascal, and PL/I to implement their application programs. These
programs are usually very hard to maintain and modify unless very
disciplined structured programming techniques are used. However., -,ith
the DBMS, the ease of development, maintenance, and modification oit
data-managing application programs can be attained. In this thesis,
we compare two versions of an inventory management program, one written
in Pascal and the other written in dBASE III PLUS, in terms of their
modifiability and maintainability.

;0 0 YR'3UTiONiAVAILAILITY Of ABSTRACT 21 ABSTRACT SECURITY CLASSIFICATION

M,:CLASSIFIEDULIMITEO 0 SAME AS RPT 0COTIC USERS unclassified
22a NAME OF RESPONSIBLE INDIVIDUAL 22b TELEPHONE (Include Area Code) 22C OFFI(E SYMBOL I

Prof. C. Thomas Wu (408) 646-3391 lCode 52Wa
00 FORM 1473, 84 MAR a] APR edrion May be used until exhausted SICXLStICTO OFT.*4PG

All other editions art obsolete assIiied

Approved for public release; distribution is unlimitel.

Comparison of Pascal and the dBASE III PLUS language
in Programming an Inventory Management System

by

Chang, To
Major, Republic of China Marine Corps

B.S., Chinese Naval Academy, 1979

Submitted in partial fulfillment of the

requirements for the degree of

MASTER OF SCIENCE IN COMPUTER SCIENCE

from the

NAVAL POSTGRADUATE SCHOOL
June 1987

Author: 6e,
Chang, To

Approved by:
C.T sor

" Michae K,, ;&. :ond Reader

fincent Y. L Chairman
Department of omputer Science

"Kneale-T. Mr~ ' '

Dean of Information and Policy Sciences

2

ABSTRACT

Before the widespread use of Database Management Systems

(DBMS), programmers have had to rely on the third generation

language such as COBOL, Pascal, and PL/I to implement their

application programs. These programs are usually very hard to

maintain and modify unless very disciplined structured

programming techniques are used. However, with the DBMS, the

ease of development, maintenance, and modification of

data-managing application programs can be attained. In this

thesis, we compare two versions of an inventory management

program, one written in Apple Pascal and the other written in

dBASE III PLUS' in terms of their modifiability and

maintainability.

[1

- 2

3

• ,:,U

-! -@ aI~* 'V ~*"

TABLE OF CONTENTS

INT ODU TIO 8

I. THE PROGRAMMING PRINCIPLE OF PASCAL.............. 12

A. INTRODUCTION 12

B. NAME AND CONTROL STRUCTURES.................. 13

C. DATA STRUCTURES 14

1. Real and Integer.............................. 14

2. Boolean Variables, Expressions and Operators.. 15

3. Characters Variables........................ 16

4. Programmer-Defined Data Types 16

5. Set Types 19

6. Array Types 20

7. Record Types................................. 20

8. Pointer Types................................. 22

D. SUMM1VIARY 24

II.THE PROGRAMMING PRINCIPLE OF dBASE III PLUS 26

A. AN OVERVIEW OF dBASE III PLUS...............26

B. THE dBASE III PLUS SYSTEM....................27

C. DATA TYPES OF dBASE III PLUS.................. 27

1. Character Data Type.......................... 28

2. Numeric Data Type 29

3. Logical Data Type 29

4. Date Data Type...............................30

5. Memo Data Type.............................30

D. DATA STRU'CTURES OF dBASE III PLUS 30

1. The Data File Structure....................... 31

4

2. I ndg............ 32

E. PROGRAMMING IN dBASE III PLUS...............33

1. Parameter Passing............................ 33

2. Control Transfers From One program To Another

.. 35

F. HOW DOES dBASE III PLUS IMPLEMENT

THE RELATIONAL MODEL 35

G. I/O PROCESSING OF dBASE III PLUS 36

1. Output....................................... 37

2. Input...39

H. SUMMARY..................................... 41

IV. STUDY AND ANALYSIS OF ORIGINAL PROGRAM 43

A. BACKGROUND................................... 43

B. ENTITY-RELATIONAL DIAGRAM.................. 43

C. PROGRAM STRUCTURES 45

1. Sale.. 45

2. Purchase 52

V. ANALYSIS AND DESIGN OF NEW PROGRAM............. 58

A. NORMALIZATION OF SALES 59

1. 1st Normal Form 60

2. 2nd Normal Form 61

3. 3rd Normal Form 62

4. New E-IR Diagram 63

5. New Data Structures 63

B. NORMALIZATION OF PURCHASE 66

1. 1st Normal Form..............................67

2. 2nd Normal Form 68

3. 3rd Normal Form 68

4. New E-R Diagram 69

5. New Data Structures 69

VI. STUDY OF MAINTANIABILITY OF THESE TWO PROGRAMS..72

A. THE ORIGINAL PROGRAM 73

1. Maintainability of Record Structures 73

B. THE NEW PROGRAM 78

1. Maintainability of Record Structures 79

VII. STUDY OF MODIFIABILITY OF THESE TWO PROGRAMS 83

A. MODIFIABILITY OF PASCAL 83

1. Modifying Data Fields In Pascal Program 83

2. Modifying Functions in Pascal Program 85

B. MODIFIABILITY OF dBASE III PLUS 86

1. Modifying Data Fields in dBase III PLUS Program.86

2. Modifying Functions in dBase III PLUS program..88

VIII. CONCLUSION .. 91

APPENDIX A: THE ORIGINAL PROGRAM 93

APPENDIX B: THE NEW PROGRAM 158

LIST OF REFERENCES .. 199

INITIAL DISTRIBUTION LIST ... 201

6

LIST OF FIGURES

2.1 Integer and Real Format 15

2.2 A Sample of Multiple-linked List 24

2.3 A Sam ple Tree ... 24

3.1 A Conceptual View of dBase III PLUS Data File 32

4.1 E-R Diagram of Original Program 44

4.2 Structured Diagram of SALES 45

4.3 Structured Diagram of FSSNEW 47

4.4 Structured Diagram of FSSHIPMENT 48

4.5 Structured Diagram of FSSINQUERY 50

4.6 Structured Diagram of PURCHASE 52

4.7 Structured Diagram of FSPNEW 53

4.8 Structured Diagram of FSPSHIPMENT 55

4.9 Structured Diagram of FSPINQUERY 57

5.1 New E-R Diagram of SALES 65

5.2 New E-R Diagram of PURCHASE 70

7

L. INTRODUCTION

In the early 1960's, when database processing was considered

an esoteric subject, data was organized in a sequential manner.

Where physical structure and logical structure are identical, and

data were sent into computer as batch processing without

real-time access. In this case, multiple copies of the same files are

kept. At that time, the software handled the 1/0 operations. If the

physical structure changed, application programs need to be

rewritten, recompiled and retested. Data was designed and

optimized for a single application, there was a high level of

program/data dependence.

Late in the 1960's, both serial and random access to records
was possible. The logical and physical layout of such files are

distinct, but the relationship between them is simple. Now, data

storage units can be changed without changing the application

program. Data structure is usually designed as sequential, indexed

sequential, or simple direct access. Multiple key retrieval is

generally not used. Data security measures can be used but are

likely to be very elementary. Still, much data redundancy exists.

In this stage, software provides data access methods but not data

management.

In the early 1970's, multiple logical files can be derived from
the same data, and those data can be accessed in different ways

by applications with different requirements. Data elements are

shared between diverse applications. The absence of redundancy

facilitates data integrity. Application storage organization is

8

- '' % % V *| . ~ ~ ;.,~

independant of the application program. It can be changed to

improve database performance without affecting application

programs. Multiple key retrieval can be used where complex of

programs. The program in this study written in the Apple Pascal

data organization are used without complicating application

language (see Appendix A) falls into this category.

Now, at the current stage of database processing, software

provides logical as well as physical data independence. Data can

evolve without incurring high maintenance costs. Utilities are

provided so that a database administrator can act as controller and

custodian of the data to insure that its organization is least for the

users as a whole. Effective procedures are provided for controlling

privacy, security and integrity of the data. With these, the

database can easily provide answers to unanticipated requests.

More than that, a data description language is provided for the

* database administrator. Also, a command language exists for the

application programs, and a query language exists for the casual

user. The dBASE III PLUS language (see Appendix B) falls into this

category.

An amazing amount of progress has been made in the computer

field since the primitive computer age of the 1950s. Personal

computers, high-level languages, artificial intelligence, and many

other technological advancements have been made in a period of

only 35 years, and new appliactions are being discovered every

day.

The idea of recording and maintaining information in an

organized manner appeared many years ago, when the value of

organized information was realized. The importance of this idea is

stressed in the Spinoza expression 'T7he order a~nd connection .-I

ideas is the same as the order and connection of things". However,

the appearance of computers started enforcing this idea with the

implementation of applications on the computer.

The use of automation and parallelism theories has also helped

the designers to make retrieval of very large databases very easy,

and in extremely timely manner.

The tremendous progress in the database design has resulted in

lower cost, and has provided a strong motivation for working in

the database develpoment field, especially on every large database.

An additionally strong motivation for working in the database

field is the wide variety of database applications. These applications

include manufacturing with inventory management, the servicing

of industries with lists of service capabilities; economic models with

production data for allocation and planning, and medical services

with patient records, disease histories, problem classification, and

treatment effectiveness data. Thus, database are appearing and

supporting almost every science. It might be said that it is the

database era in computer application.

An important consideration in the design of the database is the

way of storing data, which is used for a broad variety of

application and can be used to make changes to the data quickly

and easily. The ability of the database to be applicable in so broad

an aspect of applications is based on a common feature that makes

database development valuable and general in a programming

methodology. This feature is a creative form which is called
"structural growth". This "structural growth" should start with a

solution on a simplified version of the problem and then repeatedly

expand its capabilities up to desired level.

Database systems are now available on machines that range all

the way from quite small microcomputers to "he largest

mainframes. The facilities provided by any given system are to

10

some extent determined by the size and power of the underlying

machine.

Following will be the detailed discussion of both the old program

written in Apple Pascal which ran on Apple II PLUS, and the new

program written In dBASE III PLUS which is going to run on IBM
PC, followed by a study of the maintainability and modifiability of

these two programs.

11. THE PR~OGR~AMMING PINCIPLE OF PASCAL

A. INTRODUCTION

The development of Pascal beian In £968 and resulted in a

compiler written entirely in Pascal in 1970 by Professor Nicklaus

Wirth of Zurich, Switzerland. The language was slightly revised in

1972 and is undergoing standardization efforts. It has become very

popular as a language for teaching programming and is widely used

on microcomputers. Its popularity is due to the fact that its

syntax Is relatively easy to learn. Also, Pascal facilitates writing

structured programs - programs that are relatively easy to

read, understand, and maintain. It is an Algol-like language, but

unlike Algol's key words, Pascal's reserved words are not typed

differently from identifiers.

In Algol, there are three primitive data types, and Booleans.

These, in turn, were very similar to the primitive data types

provided by FORTRAN. This reflects the fact that both of these

languages are predominantly scientific programming languages.

Numbers and logical values are the most useful objects for

scientific programming. Pascal extends its applicability to

commercial and systems programming by providing one additional

primitive data type, CHARACTERS. Pascal is a third generation

language, and a reaction to the second generation languages. Its

emphasis is on simplicity and efficiency. There are two similar

standards for Pascal. They are ANSI/IEEE (American National

Standards Institute/Institute for Electrical and Electronics

Engineers) Standard, and ISO Inter- national Standard.

Although Pascal was intended as a teaching language, many

other programmers have found that It is also suitable for wreal"

12

programming. Its strong typing simplifies debugging and helps

catch latent errors in production programs; Its rich set of efficient,
high level data types simplifies many non-numeric programs; and
its small size means that a programmer can acquire mastery of

the language in a moderate amount of time.

These qualities have made Pascal an attractive vehicle for

programming research. Pascal has been extended for concurrent

programming, to support verification, and for operating system

writing, or even a database writing (the original program in this
thesis is a good example of it). Pascal has become a basis for
almost all new language designs; most new languages are
*Pascal-llke. *This includes the language Ada.

B. NAME AND CONTROL STRUCTURES
Pascal includes important additions to Algol's name, data, and

control structuring mechanisms. Variable declarations are

Introduced by the word var and have the syntax:

<names> :<type>

Procedure and function declarations are quite similar to Algol's,
except that the begin comes after the local declarations rather

than before them:

procedure <name> (<formals>)

< declarations >
begin

< statements >

end;

In addition to variable and procedure declarations, Pascal has
constant and type bindings. Variables can declared to be the type
of a range of integer. This new data type then can be used in

other data types. Type declarations are introduced by the word

13

type and have the syntax:

< name > = < type >

Pascal has added a character data type for nonnumeric

programming and a variety of data type constructors for arrays,

records, sets, polnter% and so forth. Programmers can use these,

in conjunction with type declarations, to design data types

specifically suited to their applications. In the program HANAOKA,

a lot of these techniques are used.

Pascal's control structures incorporate many of the ideas of

structured programming. Of course the if-then-else and for-loop

(in a very simplified form) are provided. Pascal also provides

leading and trailing decision loops and a case-statement for

handling the breakdown of a problem into many cases. The goto is

provided in a simplified form.

C. DATA STRUCTURES

Pascal inherits the three primitive data types from Algol: reals,

integers, and Booleans. These are considered to be the standard

data types (or simple data types) of Pascal.

1. Real and Integer

The data types INTEGER and REAL are used to represent

numeric information. People use INTEGER variables as loop counters

and to represent data such as an exam score or those without

decimal point. The data type REAL can be used to represent all

numbers, as a matter of fact, INTEGER is a subset of REAL. On

many computers though operations involving integers are faster

and less storage space is needed to store integers. Also operations

with integers are always precise whereas there may se some ioss

of accuracy when dealing with real numbers.

14

These differences result from the way real numbers and

integers are represented internally in memory. real-numbers tend

to be computer dependent; some sample integer and real formats

are shown in Fig. 2-1.

Intagr format ral format

Nnar mantisa.I expoent

Figure 2-1 Integer and Real Format

In Fig. 2-1, each Integer Is represented as a standard binary

number. Real format is analogous to scientific notation. The storage

area occupied by a real number is divided Into two sections: the

mantissa and the exponent. All the arithmetic operators

+-,,/) seen so far can be used with either integer or real

operands. But the two operators, div and mod, that must be used

only with type INTEGER operands. With these operators, we can

write multiple-operator expressions that compute the desired

results. -

2. Boolean Variables. ExDressions and Operators

A BOOLEAN variable or constant can be set to either of the

BOOLEAN values, TRUE or FALSE. The statement

const

GOOD = TRUE;

specifies that rhe BOOLEAN constant GOOD has the value TRUE. We

can use the relational operators (=, <, >, etc.) with numeric

data to form conditions or BOOLEAN expressions. There are three

BOOLEAN operators: and, or, not. These operators are used with

operands that are BOOLEAN expressions. BOOLEAN variables can be

used as program flags to signal whether or not a special event

15

occurred In a program. The fact that such an event occurred is

important to the future execution of the program. A BOOLEAN
variable used as a program flag Is initialized to one of Its two

possible values (TRUE or FALSE) and reset to the other as soon as

the event being monitored occurs.

3. CharactezrsVarables
Pascal provides a character data type that can be used for

the storage and manipulation of the individual characters that
comprise a person's name, address, etc. Character variables are

declared using the data type CHAR in a declaration. A character

value consists of a single printable character (letter, digit,

punctuation mark, etc.) enclosed in apostrophes. A character
value can be assigned to a character variable or associated with a

constant identifier.

Relational operators can be used with characters. For
example, the BOOLEAN expressions

SENTENCE = BLANK
SENTENCE <> PERIOD

are used to determine whether two character variables have the
same value or different values. Order comparisons can also be

performed on character variables using the relational operators <,
=>1 >=.

4. Proorammer- Defined Data Types

One of the features of Pascal that accounts for its widespread

use Is that it permits the declaration of new data types. In Pascal,

you can define enumerated types, subrange types and set
types.

Often programs must manipulate nonriumeric data; this is

16

.......... * ~* ~~

usually character data, but it can also be more abstract. For

example, a commercial data-processing program may need to be

able to deal with days of the week. With enumerated types we

can construct types by enumerating, or listing, all their possible

values. For example, we can declare the types for months, days

of the week, and sexes like this:

type
month = (Jan, Feb, Mar, Apr, May, Jun, Jul, Aug, Sep, Oct,

Nov, Dec);
DayOfWeek = (Sun, Mon, Tue, Wen, Thu, Fri, Sat);
sex = (male, female);

It is then possible to declare variables of these types and use

them:

var
today, tommorow : DayOfweek;
ThisMonth : month;
gender: sex;

begin

today := Tue;
today := tommorow;
ThisMonth := Apr;
gender := female;

Pascal also preserves security by preventing the programmer

from performing meaningless operations on enumeration values.

People use abstract data type: a set of data values and the

primitive operations on those data values. For -an enumerated ,rpe,

the set of aata vaiues are specified in the enumeration. The

operations don't have to be specified because they are the same for

all enumerated types:

u, succ, pred

=0 <>, <1 >1 <=, >=

17

The ordering relations (<, >, etc.) are defined according to the

order specified in the declaration of the enumerated type. For

example, Mon < Wen and Dec > Jan. The succ and pred functions

give the succeding and preceding elements in the list. For example,

succ(Mon) = Tue and pred(Mar) = Feb. These operations are also

secure; for example, succ(Sat) and pred(Jan) are errors.

The benefits of enumerated types can be summaried as

followed:

I. They are high level and application oriented.
2. They allow programmers to say what they mean.
3. They are efficient since they allow the compiler to

economize on storage, and the operations can be
performed quickly.

4. They are efficient since the compiler ensures that
programmer can't do meaningless operations.

We have seen that the enumerated type improves security

since the compiler can check if the programmer is doing something

meaningless, such as asking for the successor of the last element

in the enumeration. The Pascal subrange type constructor

extends this checking to Integers and allows tighter checking on

other types. Suppose the variable DayOfMonth is used to hold

meaningful values from 1-31. although this could be declared as an

integer variable, our program will be more secure if we use a

subrange type:

var DavOfMonth : 1..31;

,f we attempt to assign to this variable a value outside this range,

we will get an error.

Subrange declarations also allow the the compiler to

economize on storage utilization. Subrange types ,:an be based on

types other than integers.

type WeekDay = Mon.. Fri;

18

If we accidently assigned Sat or Sun to a variable of type
WeekDay, we would get an error. Also, Pascal permits the

progr-ammer to define subranges of any discrete type, that is,

enumerated types, integers, and characters. It does not permit

defining a subrange of the real numbers, which is a continuous
type.

5. Set Types
Pascal provides the ability to manipulate small finite sets

using the standard operations of set theory. The set type is almost

an ideal data type. It is high level and application oriented yet
very efficient.

The description of a set type has the form

set of < simple type >
where a <simnple type> is an enumerated type (including char), a
subrange type, or a name of one of these. An existing set can

be modified using the set operators. Before a set can be

manipulated, its initial elements must be defined using a set

assignment statement. A set variable must always be Initialized

before it can be used with any of the set operators. The set

operators union, Intersection, and difference require two sets of the

same type as operands. The +,*, and - are treated as set operators

when their operands are sets. These operators can be used to

combine two sets to form a third set. If more than one set

operator is used in an expression, the normal precedence rules ftor

the operators i-, *, and - will be followed. When in doubt, it is best

to use parentheses to specify the intended order of evaluation.

Sets may also be compared through the use of the relational

operators =, <=, etc. Both operands of a set relational operator

must have the same base type.

19

6. ArraJyMI

Pascal is descendant of Algol-60, and Algol-60 generalizes

FORTRAN arrays in two respects: It allows any number of

dimensions and it allows lower bounds other than one. Pascal has

generalized Algol's arrays in some respects and has restricted them

in others.

One of the generalizations is in the allowable Index types.

They can be subscripted by many other types including characters,

enumerated types, and subranges of these.

var A: array [1.. 100] of real;

Notice that the dimensions of the array have been specified

as a subrange of the integers. Actually, any finite discrete type

can be used as an index type.

Another way in which Pascal generalizes Algol arrays is in

the allowable element types. Now any type can be the base type of

an array type. That is, we can have arrays of integers, reals,

characters, enumerated types, subranges, records, pointers, and so

forth. In general, a Pascal array-type constructor has the form

array [<index type>] of <base type>

Where <index type> is any finite discrete type and <base type> is

any type at all. Thus, Pascal arrays can be considered finite

mapping from the index type to the base type.

Arrays can be defined as multidimensional arrays. Suppose

we need a 20X100 arrays of reals M, we can define

var M : array [1.. 20] of array [1..100] of real;

As mentioned above, the base type of an array can be any type,

including another array type.

20

m -- Wt W-...... W%.% - 'jWJ'.. .,v-Y,, s > . .- ,-. ',,.. (.

7. Reod y

One of the most important data structure constructors

provided by Pascal is the record-type constructor. This is a
data structure that allows arbitrary groups of data.

type person = record
name string;

age 18.. 100;

rank string;

sex (male, female)

birthdate :date;

end;
Just like an array, a record has a number of components. Unlike

an array, however, the components of a record can be of different
types. Also the components of records can themselves be complex

data types. The components of arrays are selected by subscripting.

A component of a record Is selected by placing a period between

the name of the record and the name of the component. Selectors

for records and arrays can be combined as needed to access a

particular component. But why have both arrays and records since
they are both methods of grouping data together. They differ in

two important respects. Arrays are homogeneous, that is, all of
the components of an array are the same type. Records are

heterogeneous, that is, their components do not have to be the
same type. In this sense records are more general than arrays.

Since arithmetic and logical operations must be performed

on individual memory cells, record variables cannot be used as the

operands of arithmetic and relational operators. These opeartors
must be used with individual fields of a record.

7he other difference between arrays and recoi-ds is ini :h'eir

manner of selecting components. We can select specific array

21

elements with expressions like A [1], A [2] just as we can select

specific record components with expressions like R.mron, R. day. The

difference is that we can compute the selector to be used with

arrays; that is we can write A [E] where E is an expression whose

value will be known at run-time. This is an important feature

since it allows writing a loop that process all the elements of an

array. This can't be done with records.

Pointer types are dynamic data structure of Pascal. Dynamic

data structures are data structures that "grow" as a program

executes. A dynamic data structure is a collection of elements

(called nodes) that are normally records. Unlike an array that

always contains storage space for a fixed number of elements, a

dynamic data structure expands and contracts during program

execution based on the data storage requirements of the program.

Dlynamnic data structures are used for storage of real world

data that is constantly changing. An example would be an airline

passenger list.

Dynamic data structures are extremely flexible. It is

relatively easy to add new information by creating a new node and

inserting it between two existing nodes. It is also relatively easy to
modify dynamic data structures by removing or deleting an

existing node. This is more convenient than modifying an array of

records, where each record is in a fixed position relative to the

others as determined by its subscript. Here is an example using

this feature:

var p -pointer;
x -integer;

begin
new(p);

22

p^ 5;

x x + p;

end;

This program allocates a memory location and puts its
address in P, stores 5 in the memory location whose address is in

P, and then add the contents of this location to x.

Since we don't know beforehand the order or number of

nodes in a dynamic data structure, we cannot allocate storage

from a dynamic data structure In the conventional way (using a

variable declaration statement). Instead, we must allocate storage

for each Individual node as needed and join this node to the rest of

the structure. The new statement is used to allocate storage for a

new node.

Also we must have some way of referencing each new node

that is allocated in order to store data In It. Pascal provides a

special type of variable, called a pointer variable (or pointer),

for this purpose.

There are four kinds of dynamic data structures use pointers

in Pascal. They are :linked lists, stacks, queues, and trees. A
* linked list or simply list Is a sequence of nodes in which each

node is linked or connected to the node following it. Each node in

the list has two fields :the first field contains data and the second

field Is a pointer to the next list element.

A stack can be thought of as a linked list in which each new
node is inserted at the head of the list and each deletion removes

the current head of the list. Inserting a node is a push operation

and deleting a node is popping the stack.

A queue is a linked list used to model things such as a line of

customers waiting at a checkout counter or a stream of jobs

23

waiting to be printed by a line printer. In a queue, all insertions

are done at one end (the rear of the queue) and all deletions are

made from the other end (the front of the queue).

So far we have involved list elements or nodes with a single

pointer field. It is possible to have lists of elements with more than

one link. We call it a multiply-linked list.

Figure 2-2 A Sample of Multiply-linked List

A special kind of multiply-linked list that has wide

applicability in computer science is a data structure called a

binary tree. (See Figure 2-3)

The details of binary tree and traverse or search of a binary

tree are subjects of Data Structure, to go further into them please

reference Data Structure text books.

ROOT

CL4 ELFV AT M 4HOG

Figure 2-3 A Sample Tree

D. SUMMARY

Pascal's primary goal was to be a good language for teaching

24

VVVVVVWV1-.K7j 77 PrX Wxxxnno - W17W

programming. This led to subsidiary goals for reliability, simplicity,

and efficiency. Pascal has been very successful in these areas.

Pascal is a particular suitable language with which to learn

programming. Most modern programming concepts are available in

Pascal. In sharp contrast to BASIC, things become much more

complex as programs grow in size. Pascal programs, by contrast,

expand gracefully. The concepts we learn with Pascal are applicable

in almost any programming environment.

Much of the criticism Pascal has received results from trying to

use it for purposes for which it was not designed. For example,

Pascal has been criticized for its lack of a separate compilation

facility, even though such a facility is not especially important in

teaching programming (the language's intended application),

Indeed, it is to Pascal's credit that it has been so successfully

applied in so many areas for which it was not intended.

25

11.THE PROGRAMMING PRINCIPLE OF dBASE 11I PLUS

A. AN OVERVIEW OF dBASE III PLUS

A database Is a central repository of related Information. To

paraphrase this, a database is a physical grouping of a collection of

individual, but related, bits and pieces of information. The

difficulty in building an effective database system is not in the

mechanics of construction, but in the intelligent design and

planned use of the database.

As an example, if one wants to maintain information about

each and every individual employed in an organization, it is

necessary to create a base of data about all the employees. This

base of data could contain, for example, information about each

employer's employee- number, name, salary, year of hire, and

date of last promotion. This base will subsequently provide

immediate access to the type of information sought. Database can

and are being maintained for every subject from astronomy to

zoology. Computers, because of their speed and accuracy, are the

information processor, the physical means, of creating and

subsequently accessing these databases.

dBASEIII PLUS Is defined as a relational database manager, that

is, this software helps create and maintain a relational database. A

relational database is one in which the data is arranged in the

form of a matrix, with the rows of the matrix forming 'each

individual record in the database, and the columns of the matrix

forming the individual fields of information. Using such a database,

one can establish a relationship between two or more databases, by

using a common 'Key field of information.

26

B. THE dBASE Ill PLUS SYSTEM

So where does dBASE III PLUS fit in with all of the previous

concepts and definitions?

dBASE III PLUS is the name of a software package marketed by

Ashton Tate, In'., of Culvery City, California; It is a very powerful

tool for the development of microcomputer business applications.

dBASEIII PLUS is a data manager. It is a piece of software that lets

the user have full freedom in the conceptuajization and creation of

database for all types of business applications. Since business

depends on timely information dissemination, the value of a

powerful, programmable utility for database generation,

maintenance, and query cannot be overstated. dBASE III PLUS is

defined as a relational database manager, that is, this software

helps create and maintain a relational database. dBASE III PLUS

can be executed on a variety of microcomputers, under any one of

the popular operating systems.

C. DATA TYPES OF dBASE III PLUS

Data is defined as something known or assumed; facts from

which a conclusion can be inferred. Data usually represents some

aspect of the physical world around us, such as a list of names and

-. addresses, the temperarure of the room, today's date and time, or

a bank statement.

A data type is a high level representation of data as seen by the

user which has a corresponding binary form understood by the

computer. Data types allow people to write programs using data

representations with which they are comfortable. The high level

representation is maintained internally as a binary format

processed by the computer.

Each language provides a limited number of elementary data

27

types. Complex data structures can be constructed from the

elementary types. dBASE III PLUS provides : Character,

Numeric, Logical, Date, and Memo. Using these data types,

complex data structures useful in representing a multitude of real

world situations can be constructed.

1. Character Data Tvoe

A field defined as a character field accepts any character

of data entered. Character data is used to represent letters of the

alphabet, numbers, and special characters. In dBASE III PLUS, the

character type is made up of the set of all ASCII characters. A

character string, often Just called a string, is any sequence of

ASCII symbols. When a number is represented as a character type,

it must first be converted to numeric data before calculations can

be performed with it. It is often convenient to use the character

data type for numbers such as telephone numbers, addresses, and

inventory stock numbers which will not be used in calculations.

Some of the more common operations performed on strings are:

Concatenating strings (linking them together)

Splitting up strings into "substrings"

Testing strings for equality

Finding substrings (string patterns)

The character variable contains textlike information: "David

Smith","1234 Fifth Street", "Computer Science Department". Any

information between the quote signs will be talen as a character

string. The maximum length of a string is 254 characters. The

minimum length of a string is 0.

Because dBASE III PLUS is a business oriented language, it

deals much more in text manipulation than computer languages

such as BASIC and Pascal.

28

";

2. Numeric Data Type

A field defined as a numeric field will only accept the

digits 0 through 9, the decimal point, and the negative sign(-) as

data. (Trying to force character data into a numeric field will lock

up the keyboard.) Numeric data is used to represent integers or

decimal quantities that will undergo computations. dBASE Ill PIUS

allows a wide range of numbers and has adequate precision for

most business and scientific applications. It maintains an internal

precision of fifteen or sixteen digits, depending on the size of the

number. This allows dBASE III PLUS to be accurate on calculations

with fairly large numbers without round off error. Internally

dBASE III PLUS represents numbers with the IEEE long real (64-bit)

binary floating point representation. A binary floating point

representation is the computer's equivalent to scientific notation.

*Each number contains three parts: the sign, either + or -, the

significand which represents the significant digits of the number,

and the exponent which multiplies the significand by the

appropriate power to yield the correct binary point position in the

final result.

3. Logical Data Type

A logical data field is one which is of a predefined length, 1

character, and will accept as input either the letters T .r 7 Cfcir

R TRUE/YES) &r the 'etters F or N ',or FALSE/N0Q.The 2c:uai aaTa :C

izorea exactly as enterea, but will be dispiayea. on the screen or

printer as ,T. or F. only. If no data is entered, the default is F.

Logical data fields are used to represent types of data when

there are only two :-hoices for any .?lement. such as maie/femie.

positive/negative, yes/no, dead/alive. dBASE III PLUS can perform

29

= - •• -I *.? l| *|| |- - | - -

-- . nn _ n , w _ w c rsss. - - ns : a a , - .a r rV v -_M- rw SrW P r ry- r

conditional tests which depend on the value of a logical field.

4. Date Data Ty

A date data field is also of a predefined length, egnrt

characters, and dBASE III PLUS presumes that you will be

subsequently entering a date of the format MM/DD/YY. At the time

of actual data entry into this field, dBASE III PLUS automatically

checks for the accuracy of the data entered. For example, an

entry of 12/35/85 would invoke a beep and an error message. The

built-in edit even checks for a leap-year! Date fields are very

useful in that they reduce the amount of programming effort

needed for routines computing time lapse, since you can add

numbers to or subtract numbers from, date fields, or you can add

or subtract two date fields directly.

5. Memo Data Type

A memo data field is also of a predefined length, 10

characters in the file itself, and automatically contains the word

memo for data. Through the use of this field, you can maintain

memos for individual records. Each memo could be up to 4000

cnaracters iong it the built-in dBASE III PLUS word processor is

used, or can be any length if it is set up with a commercial word

processor. dBASE III PLUS makes use of an external file in which it
stores the contents of the individual memos, and hence the meno

-an ftave the --apacities mentioned above. This -xternat :ile will

have the same primary name as the dBASE III PLUS tile, but wiil

have the .DBT extension for the secondary name. dBASE III PLUS

maintains this file in an internally usable form.

D. DATA STRUCTURES OF dBASE III PLUS

30

I

dBASE III PLUS contains powerful high level commands which

allow people to create and manipulate sophisticated data structures

easily. There are several common models used to represent data

structures. dBASE III PLUS uses the relational model: the data is

represented in flat (two-dimensional) tables composed of rows and

columns. In relational databases, a two-dimensional table is known
as a "relation", and operations on these tables can be described
with mathematical precision. However, the relational model is

very powerful and all other common data models can be

represented using two-dimensional (relational) tables.

The CREATE command is used to create a data file structure

matching the body of data that it is intended to represent This

structure can store data as individual records and the data can

then be easily accessed and manipulated.

1. The Data File Structure

The dBASE III PLUS data file can be seen as a

two-dimensional table containing the following properties:

a. All items in a column are of the same data type; that

is, the data file is column-homogenous. A column in

dBASE ill PLUS is a field.

b.Each column (or field) must have a distinct fieldname. No

duplicate fieldnames are allowed.

c.Each row .s a record and is assigned a nurner Tho

record number assignea is relative to the record's position in the

data file.

A conceptual view of a dBASE III PLUS data file is:

31

) Sf ., k , L,, .. * " * ". "• - e "' w . ' .. ,, - ' *** * • .. ', '. ," .. *. ". " "." - ' "-" ". '-_ . . ". " . ' . - . .'. ". "- .

FIMDI FIELD2 2

Nam Addrm city 4 128 fields)

REO 00001_____

REORD 00002 ____

(qmzimm of I b0=~o recwds)

FMpzrs3-1

The limitations on dBASE III PLUS data fles are:

File limits (maximum sizes)

Number of records/file 1 billion

Record size (bytes) 4000 bytes in DBF file

Number of fields/record 128

Field limits

Character fields 254 bytes

Logical fields 1 byte

Numerical fields 19 bytes

Date fields 8 bytes

Memo fields 10 bytes In DBF file

DBF file size iimit only by operating system, hardware?

or word processor used.

2. Indexng

One of the most important features of any database system

Is the ability to find a specific data item from among many item

32

*J~J *~~P *$ ~ * ~ * '~ *

quickly. Search by index is the best way to shorten long sequential

search times to only a couple of seconds.

When the INDEX ON <key> command is issued in dBASE III

PLUS, a seperate index file is creates based on the key expression

specified in the command line. The followings are examples of

creating indexed files:

USE Customer (Select data file)

INDEX ON Names TO Customer (Generate index)

This index allows rapid searches of the Customer database by

Name . Any record can be found in two seconds or less with the

FIND or SEEK command.

E. PROGRAMMING IN dBASE III PLUS

In dBASE III PLUS, a program is actually a set of commands :n

sequence. To create a program, at dot-prompt, Just type In:

CREATE COMMAND pgrn <CR>

This command informs dBASE III PLUS of your intention to create

a command tile (program) called pgm.PRG. The screen is then

erased; the dBASE III PLUS word processor takes over; there is no

dot-prompt; and whatever you key in will remain on the screen,

until you either SAVE it(Ctrl-W), or DELETE it(Ctri-Q).

To invoke the execution of a program, simply request dBASE III

PLUS to:

DO PGM <CR>

.0 riake ch"anges 7-. n -xisting prograrn. Ise 2.,e

commana

. MODIFY COMM pgm <CR>

The main value of parameter passing occurs when a low

~33

I! ...-..., .-.-- ,, _, -:k . : , C- *- ' .-" ; C -* : t "

command file can be called from many different programs in

many situations and must be free of the naming convention used

in the calling program.

There are two kinds of variables, PUBLIC(global) and

PRIVATE(local). A PUBLIC variable can only be released by the

programmer while a PRIVATE variable is released by dBASE III

PLUS when the program returns from the command file in which

the variable was created.

All variables created in a command file are PRIVATE unless

specifically declared PUBLIC. All variables created in higher level

command file are available to the lower level command files unless

there is a clash. If a variable is declared PRIVATE in a command

file and there exists another variable from a higher level with the

* same name, then dBASE III PLUS has to decide which variable is to

be referenced and which is to be hidden. Until the PRIVATE

variable is released, dBASE III PLUS hides the higher level variable

and all references of the variable name refer to the lower level

variable.

The variable status, PUBLIC or PRIVATE, can be directly

specified:

PUBLIC name, city

PRIVATE salary

Any variable can be released with the RELEASE command:

RELEASE name, city

dBASE III PLUS automatically releases a PRIVATE variable ,w/hen

the user leaves a command file with RETURN, CANCEL, or QUIT.

Usually variables are passed from one command file to another

without specific instructions. With parameter passing, the high

level command file does not have to follow the same naming

convention that the low level command file uses.

34

- . . , .
4 . - .

PUBLIC variables should be used sparingly. Generally

variables should not be made PUBLIC without some specific reason.

While debugging, the most important variables should be PUBLIC so

that they can be inspected if the program crashes and control

returns to the dot prompt (thereby releasing all the private

variables).

2. Control Tranfers From One Program To Another

Just as you invoke the execution of a program by asking

dBASE III PLUS to DO <program name>, you can invoke the

execution of another program from within the first one in the

same way. The calling program, at some logical point in Its

execution, transfers control to the called program. At the end of

the execution of the called program, control is automatically

transferred to the instruction after the DO instruction that

passedcontrol to the called program.

This concept of transferring control to subprograms and then

receiving control back at the main program is very important to

the programmer, since it permits the breakdown of a large

complicated system into subset of logically connected, more

manageable subprograms. This makes the system much more

comprehensible not only to other programmers but also to the

creator of the system.

F HOW DOES dBASE If PLUS IMPLEMENT THE RELATIONAL MODEL

In dBASE III PLUS, there is a very powerful command:

SET RELATION TO

The SET RELATION creates a link between two data files. Its

power stems from the tact that dBASE III PLUS will automaticaliy

look up related information from another file. This means that

35

FORM commands, will perform a search of another database.
As an example, suppose sales information is kept in one file and

time of shipment Information in a second file. SET RELATION will

allow the user to produce reports on the transactions in which

dBASE III PLUS looks up the sales information at each transaction.

For example, in SINQUERY. PRG:

SELECT I

USE b: s.contra INDEX b: s..conind

SELECT 2

USE b:tmofship INDEX b:tmshipdx

then In SALELIST. PRG:

SET RELATION TO snumber INTO tmofshlp Il

this will create relationship between s-contra and tmofship with

snumber as the common key.

SET RELATION is equivalent to a user who always performs a

SEEK command at each record but It is faster than writing the

individual commands and It enables many dBASE III PLUS

command to utilize the second file. This gives multi-file capabilities

to the nonprogrammer.

G. I/0 PROCESSING OF dBASE III PLUS

The I/O processing of dBASE III PLUS is more concerning about

the communication between the programmer and operator. This

communication can be broken down into two categories: -

.. Output: The programmer talks to the operator.

2. Input: The operator talkks to the programmer.

As mentioned above, dBASE III PLUS was designed for
microcomputers. Most current I/O devices used on microcomputers

are CRTs(or screen). Therefore, dBASE III PLUS contains very
powerful screen handling capabilities discussed below.

36

.5-

powerful screen handling capabilities discussed below.

1. Outpu

In dBASE III PLUS, output screen handling refers to the

process by which the programmer talks to the operator. The

output commands used to support screen handling can be

categorized according to the mode in which they work:

a. FORMATTED MODE

@ <coordinate> SAY

This command places its output at the screen location specified by

the programmer, thus formatting the screen.

In addition, it has options which allow the programmer to

modify the display of its data, thus formatting its output.

b. UNFORMATTED MODE

General:

Specialized:

DIR

DIRECTORY

DISPLAY

LABEL
?E

These commands are dependent upon the current cursor

position and begin their output at that location. The most

frequently used commands in communicating with the operator in

IBASE I1 ?LUS programming applications ,s the !0 SAY command

because of the degree of control it offers. The ? command is

37

*~~ *% % * 4

when a screen scrolling effect is desired.

TEXT ... ENDTEXT is a structured output command,
rather than a structured programming command because It has no
effect at all on program flow. It is simply a convenient way of
outputting large amounts of unformatted text. The literal text
must be contained within the TEXT ... ENDTEXT structure, and
therefore is a constant in the command file.

c. FORMATTED SCREEN
The <coordinates> specified in the 9 ... SAY command

control where the output will appear on the screen. The syntax
and range for computers with 24X80 screens is:

* <coordinates> SAY <expression>
<coordinates> = <row>, <column>
<row> = numeric expression, range 0-23 (line)
<column> = numeric expression, range 0-79

Note that minus numbers cannot be used with this relative
addressing operator.

d. FORMATTED OUTPUT
In addition to formatting the screen, we can also format

the individual picture of each data Item when we display it. The
... SAY command offers the programmers a variety of options for

displaying data in a format different than the format in which it
exists. For example, a numeric field cannot contain commas, bcut

it can be displayed with commas when output with @. ... SAY

command. The syntax ard formatting options are:
9 <coordinates> SAY <expression> <format option>
<format option> = PICTURE '<picture template>'

I FUNCTION '{<function>}'

38

I FUNCTION '{<function>}'

I USING '{<using symbol>}'

2. Inpa

Input screen handling refers to the process by which the

operator talks to the programmer. Output screen handling is the
reverse of this. Operator input must be carefully handled. This is
the time to trap all the possible errors so that the data in the

database is always known to be accurate and good. The input
commands used in dBASE III PLUS can be categorized according to
the mode in which they work.

a. FULL-SCREEN MODE

@... GET

This command places a variable (field or memory variable) at the

screen location specified by the programmer. In addition, it has

options which allow the programmer to restrict the operator's

input. "

READ [NOUPDATE]
This command places the cursor in variables which have been
placed on the screen with @ ... GET. This enables the operators to

enter or edit data in the varaible.

b. COMMAND-LINE MODE

Memvar:

ACCEPT (character type)

INPUT (date, logical, and numeric types)
WAIT (character type, one character only)

Of course, the most frequently iued commands for receiving .
communications from the operator is the @... GET/READ

39

often used to simply pause the program execution until the

operator hits any key; the keystroke itself is usuall disregarded.

ACCEPT and INPUT are usually used for quick utility type

applications where a high degree of error trapping is not required,

or when it is desirable to give the operator lots of flexibility, such

as in programmer's utilities. ACCEPT will only accept a character

type literal while INPUT will accept an expression of any data type.

Screen placement and appearance ofGET are the same as

* forSAY, which are mentioned above. There is one combination

form, theSAY. ... GET which places the GET <variable> on the

* screen immediately following the SAY <prompt>.

@ 5, 0 SAY 'Your name:'

@ 5,14 GET memvar

@ 5, 0 SAY 'Your name:' GET memvar

* These both produce the same results. The first form makes writing

some screen easier.- The second form runs faster.

c. FORMATTED INPUT

The @. ... GET command offers the programmer a variety of

options for limiting the data that the operator can enter. For

example, a character type variable can be limited to accepting

only numbers from the keyboard. The syntax and formatting

* options are:

@ <coordinates> GET <variable name> <format option>

<variable name> = A currently active memvar

IA field in the currently selected

database file

<format option> = PICTURE '<picture template>'

I FUNCTION '{<function>}'

40

V

I RANGE<nl>, <n2>

d. FORMAT FILE

Format files are like command files except that they
contain only @... SAY and @... GET commands and comments.

Format files allow the formatting of the screen during the

full-screen interactive database commands APPEND, CHANGE, EDIT,

and INSERT. An open format file also affects the execution of the

READ command by clearing the entire screen, resetting the GET

counter, and redisplaying its SAYs and GETs. DBASE III PLUS can

have one format file for each of its ten work areas if this will not

exceed the limit of thirteen simultaneously open files of all kinds. It

also closes any open format file in the currently selected work area

when a new database file is opened or any current one closed.

This command open a format file:

SET FORMAT TO <format filename>

These commands close all open format file:

*' CLEAR ALL

CLOSE DATABASES

These commands close only the open format file in the currently

selected work area:

CLOSE FORMAT

SET FORMAT TO

USE

H. SUMMARY

In dBASE Ill PLUS, there are no ARRAYs, RECORDs, SETs,

FUNCTIONs, ENUMERATED TYPEs nor LINKED LISTs. These were

considered to be necessary for structured programming, but quite

an overhead to a database system. dBASE III PLUS uses nothing

41

but two-dimensional tables to implement its data structures and

file organizations. dBASE III PLUS consists of a set of commands

each with a "syntax. U Each command is extremely flexible and can

perform an infinite number of variations on a particular task. It's

invaluable flexibility requires more learning effort on the part of

the user.

The control structures such as SEQUENCE, BRANCH, REPETITION

and those algorithms which are used in most programming

languages are available in dBASE III PLUS too. But dBASE III PLUS

does not support recursion.

In general, dBASE III PLUS is a versatile database manager. It is

designed to handle the many business applications in which the

user needs to manage large amounts of repetitive information. It

can function as a simple file manager. It can handle the complex

issues in relating files to one another, and it can be used as a

complete language like Pascal or BASIC.

42

IV. STUDY AND ANALYSIS OF ORIGINAL PROGRAM

A. BACKGROUND

The original program - written in Pascal, is a typical inventory

management system software, written for Import/Export

Company, which purchases feed stuffs such as hays, grass, etc.,

from farmers in California. Those feed stuffs are compressed and

packed into 9X40 foot containers and shipped to foreign

countries. This program was written in order to keep track of the
sales and the purchase. For instance, how many tons of the

* grass have been purchased? How many of them have been

shipped? At what price, and what time? How many tons left need

to be shipped to complete a contract? The analysis of the algorithm

and data structures used in this program are discussed in detail in

the following sections.

B. THE ENTITY-RELATIONAL DIAGRAM

Sales and Purchases are an independent process within Hanaoka,

as can be seen on the next page (Figure 4-1). The E-R diagram of

Hanaoka was divided into two sub-diagrams. The upper part is for

Purchases and the lower part is for Sales. There are some identical

components in these two sub-diagrams.

In Sales, each sale record contains one customer and several

time- of -shippings records. The sale recoro is used to update the

sale con tract according to the contract number. The sale contract

uses the invoice number (input from screen) concatenated with

the contract number as a new invoice number to update the sales

shipment record. Data is passed from the sales record. Also the
sales record can be used to check the hash file for the duplicate

43

P&NRWRVWV'Iq ~ ~ ~ ~ ~ ~ ~ ~ T~ VRWWN(vv nLW rrAW wwwwvr, %

Two of

Tnob

UP" MW

ft") bap

Up"

UP"P

44A*

5PUrW__91 W -b WN U WwU

key. If there is no duplicate key then this sales record can be

inserted into an empty slot of the hash file according to the status

(empty or occupied) of that slot. Each sales shipment can be

updated by the sales shipment record and each sales shipment

contains several containers

In Purchase, each purchase record corresponds to each farmer.

Each purchase record can contain several time-of-shipping records.

New purchase information can be stored into the hash file and

purchase file by checking the slot's status (empty or occupied). One

purchase needs one purchase shipment record which can contain

several trucks records, and can be used to update purchase

shipment records.

C. PROGRAM STRUCTURES

1.

Figure 4-2 Structured diagram of Sales

The followings is the programs)utline for Saies.

(For details, please reference APPENDIX A)

45 °S.

4* -S- . S- S - - .

SAtL. "

* MAIN PROGRAM S

SEGMENT PROCEDURE fssinquery;
{ to prompt the query concerning the feed stuff sales files }
BEGIN
END;

SEGMENT PROCEDURE fssnew,
{ to input new sales contract nto the files }
BEGIN
END;

SECMENT PROCEDURE fssshipment;
{ to input shipment information for the existing contract }
BEGIN
END;

PROCEDURE fdstfsales;
{ procedure to handle all operations concerning feed stuff sales }
BEGIN
END;

• FSSNEW

SEGMENT PROCEDURE fssnew;

PROCEDURE tosconvert;
{ converts timeofship array input)
BEGIN
END;

PROCEDURE getfssinfo;
{ input all pertinent info for new sales contract)

FUNCTION proceed : boolean;
{ returns true if the input line is not empty, so not to allow
null input }

BEGIN
END;

PROCEDURE tosinfo;
{ handles one input array timeofship, different proc since the
input format differs from other input, i,e., makes procedure
READNEXTINPUT too long }

BEGIN
END;

46

%,,..¢ :'l , 'V:V % . ,%,.., '_. -. v . -.- ... ,. • /. •. .-- , ," '.. ' - .. ". -, ": . ".".". -.- -".-.'," ,' -

PW pn PnPW1" r PWPWIAR WW 1W IFTI AL W NEW9 Fr a W -W - W'd W - W 9 - 'p

hwwdW

Figure 4-3 Structure diagram of FSSNEW

PROCEDURE readnextinput;
I handle one input at a time, var lineno, determines which
input}
BEGIN
END;

PROCEDURE fssmodify;
{ re-reads any specified Input once more)
BEGIN
END;

BEGIN
END;

BEGIN
END.

FSSSHIPMENT

47

.-- -- -- wwflflnflu.w flrwr W %" rwwr wvnr SFC7 f 1k.nl ' r IL W O .-. ~-

SEGMENT PROCEDURE fssshipment;

PROCEDURE contconvert;
I converts container array Input from string to approriate data
type}

BEGIN
END;

PROCEDURE computepart;
{does all necessary conversion (lbs->shorttons) and computation

BEGIN
END;

PROCEDURE getshlpinlo;
{get all pertinent info for a shipment}

FUNCTION sproceed : boolean;
{ same as FUNC proceed}
BEGIN
END;

Penn %I~

Figure -4 Stru triarmoe SSIMN

48

PROCEDURE nextshlpinput;
{ reads one input at a time }
BEGIN
END;

PROCEDURE shipmodify;
{ re reads specified input once more }
BEGIN
END;

BEGIN
END;

PROCEDURE shippaperwork;
{ produces five documents pertaining one shipment

PROCEDURE signature;
{ write closing (like rubber stamp)
BEGIN
END;

PROCEDURE underline;
prints - for specified no of times }

BEGIN
END;

PROCEDURE ashipinv;
{ top half of invoice }
BEGIN
END;

PROCEDURE bshipinv;
{ bottom half of invoice }
BEGIN
END;

PROCEDURE ashippaklist;
{ top half of packing list }
BEGIN
END;

PROCEDURE bsnippak ist;
{ bottom naalf of packing list }
BEGIN
END;

PROCEDURE acertorigin;
{ top half of cert of origin }
BEGIN
END;

PROCEDURE bcertorigin;

49

|

{bottom half of cert of origin}
BEGIN
END;

PROCEDURE aphytocert;
I top half of phytosanitary cert.}
BEGIN
END;

PROCEDURE bphytocert;
{ bottom half of phytosanitary cert}
BEGIN
END;

PROCEDURE fumigation;
{ fumigation certificate}
BEGIN
END;

BEGIN { shippaperwork}
END;

BEGIN
END.

FSSINQUERY

jjiitto Iprilabottoml I uevgp I prllstshp

Figure 4-5 Structure diagram of FSSINQUERY

SEGMENT PROCEDURE fssinquery;

{handles queries of following types:

50

1. list all customers by company name.
2. list all contracts of one customer.

3. list all information (include all shipments made) of one 4

contract
4. list available spaces in FSSFILE and FSSSHIPFILE }

PROCEDURE Uisttop;
{ list top half of contract information }
BEGIN
END;

PROCEDURE listbottom;
{ list bottom half of contract information }
BEGIN
END;

PROCEDURE prllsttop,
{ same as listtop but outputs to printer }
BEGIN
END;

PROCEDURE prlistbottom;
BEGIN
END;

PROCEDURE listship;
{ list shipment info to console }
BEGIN
END;

PROCEDURE prlistship;
{ list shipment info to printer }
BEGIN
END;

PROCEDURE onecontrinfo;Shandles query of type 3}

PROCEDURE case3sub;

{ handles the shipment info of one contract and printout of
contract info to the printer }

BEGIN
END;

BEGIN
END;

51

PROCEDURE residuecheck;
{ handles query of type 4}
BEGIN
END;

BEGIN { FSSINQUERY }
END; { Note query 1 & 2 is handled in this main procedure }

2. Purchase

Figure 4-6 Structure diagram of Purchase

Followings are the program's outline of purchase:
(For details, please reference APPENDIX A)

PURCHASE

* MAIN PROGRAM

SEGMENT PROCEDURE fspinquery;
{ to prompt the query concerning the feed stuff purchase file I
BEGIN
END;

SEGMENT PROCEDURE fspnew;
{to input new purchase contract into the files }
BEGIN
END;

52

%

SEGMENT PROCEDURE fspshipment;
{ to Input shipment information for the existing contract
BEGIN
END;

PROCEDURE fdstfpurchase;
{ procedure to handle all operations concerning feed stuff purchase}
BEGIN
END;

* FSPNEW

if

Figure 4-7 Structure diagram of FSPNEW

SEGMENT PROCEDURE fspnew;

PROCEDURE tosconvert;
{ converts timeofship array input }

53

BEGIN
END;

PROCEDURE getfspinfo;
{ input all pertinent info for new purchase contract }

FUNCTION pproceed : boolean;
{ return true if the Input line is not empty, so not to allow

null input }
BEGIN
END;

PROCEDURE tosinfo;
{ handles one input array timeofship, different proc since the
input format differs from other input, i,e., makes procedure
readnextinput too long }

BEGIN
END;

PROCEDURE nextpurinput;
{ handles one input at a time, var lineno determines whichinput}

BEGIN
END;

PROCEDURE fspmodify;
{ re reads any specified input once more }
BEGIN
END;

BEGIN
END;

BEGIN
END;

FSPSHIPMENT

, SEGMENT PROCEDURE fspshipment;

PROCEDURE truckconvert;
{ converts truck array input from string to approriate data type:- }
BEGIN
END;

54

4

,Iv wV W'WI

PROCEDURE gettruckrate;
{ decides the price rate and convert into approriate data type }
BEGIN
END;

Figure 4-8 Structure diagram of FSPSHIPMENT 2

PROCEDURE truckcostcomp; :h
{ decide the rate base (lbs or short tons) and does the
computation } t",

BEGIN
END;

PROCEDURE fspcompute;
{ compute the numeric data according the rates and bases }
BEGIN
END;

PROCEDURE getpurshipinfo;
{ get all pertinent info for a shipment }

FUNCTION psproceed;
{ same as pproceed I
BEGIN

55

END;

PROCEDURE nextpurshipinput;
{ reads one input at a time }
BEGIN
END;

PROCEDURE purshlpmodify;
{ re reads specified input once more }
BEGIN
END;

BEGIN
END;

* FSPINQUERY

SEGMENT PROCEDURE listpurcontr;
f list purchase contract to the console }
BEGIN
END;

SEGMENT PROCEDURE prlistpurcontr;
f list purchase contract to the printer
BEGIN
END;
SEGMENT PROCEDURE purcontrinfo;
{ list purchase shipment information

PROCEDURE listpurship;
{ list purchase shipment information to the console
BEGIN
END;
PROCEDURE printpurship;
{ list purchase shipment information to the printer }
BEGIN
END;

PROCEDURE subpurcontr;
I list shipment informations in sequence
BEGIN
END;

BEGIN
END;

56
I

tr-sunturcmt

Figure 4-9 Structure diagram of FSPINQUERY

SEGMENT PROCEDURE fspresiduecheck;
{ handles query of type 4 }
BEGIN
END;

SEGMENT PROCEDURE fspinquery;
{ handles queries of following types:

1. list all commodities.
2. list all contracts of one commodities.
3. list all information (include all shipments made) of one

contract
4. list available spaces in fspfile and fspshipfile }

BEGIN
END;

57

. - .. .,- . . ,- . .. - . ..-.- ,..;..-.-. ". " . - .. .'.. . ..- "." .. "..-..".- . . -.' .- "

V. ANALYSIS AND DESIGN OF NEW PROGRAM

In order to use the dBASE III PLUS to rewrite the original

program, we need to replace the existing set of files by its logical

equivalent. The term * file structure, N refers to the complete set

of stored data, its division into component sets, and the

relationships that exist among those components. In most cases,

the component sets are files or repeating groups within files. The

relationships that exist among components include access keys,

ordering techniques, redundancies, pointers, and so forth.

It is the whole file structure that must be logicalized. To talk

about deriving logical equivalents of each current file is fruitless,

because the very decision that some of these files should exist at all

may have been physical. So we have to go back and think about

the whole (the union of all data elements), and start from scratch

to divide those files into its component pieces.

The process of dividing those files into its components is called

normalization, which is a process to analyze the functional and

multivalued data dependencies. The objective of normalization is to

avoid redundancy and update, insert, and deletion anomalies.

Each time we normalize a file, we replace a multipurpose file by

two or more files. These files together can accomplish the same set

of purposes as the original. The new files are alwavs more

singieminded than the one they replace. it frequently happens that

the new equivalent files need to be normalized again.

There are different levels of normalization, named ist normal

form, 2nd normal form, 3rd normal form, BC normal form.

4th normal form, 5th normal form and domain/key normai

form.

58

..............................

A relation is in 1NF (1st normal form) if it contains no repeating

groups. It Is a simple matter to produce INF from an unnormalized

relation.

A relation is in 2NF if it is in 1NF and there are no partial

dependencies.

A relation is in 3NF if it is in 2NF and there are no transitive

dependencies. For most practical databases, 3NF is sufficient.

A relation is in BCNF (Boyce Codd) if it is in 3NF and every

determinent is a candidate key.

A relation is in 4NF if It Is in BCNF and there are no multivalued

dependencies.

Before rewriting the original program, we have to normalize the

relations of the files used in the original program, then use those

normalized logical file structures to create new Entity-Relational

diagrams and a new relational database written with dBASE III

PLUS.

A. NORMALIZATION OF SALES

As we can see in Appendix A, the file structures declared in the

original program are listed as follows:
FSSFILE { Status, Number, ContrDate, Customer. Name,

Customer. Addr, Customer. ContrNo, Commodity, Pricebase,
Lc. Number, Lc. ExpDate, Lc. ShipDate, Lc. Bal, Lc. Amount,
imeki~n, TotalShip, BalOfShip, IssueBank, DrawBank,
MitiNo, NofShipment, Shipmentlnfo}

TimeOfShip { Month, Wgt, Bal, UnitPrice }

FSSHASHFILE { Status, Number, Name, Commodity, Link}

FSSSHIPFILE { Status, InvoiceNo, Name, Origin, Dest, Etd,
InvoiceDate, TotalBales, TotalNet, Qn91tanr,
NotCont}

Container { Number, Bales, Net }

59

...]

FSSCONTRACT { same as FSSFILE }

FSSDUMMY { same as FSSFILE }

FSSSHIPREC { same as FSSSHIPFILE }

1. Ist Normal Form

There are three file structures used in Sales, with two

repeating groups in FSSFILE (as indicated with underline) and one

repeating group in FSSSHIPFILE. One temporary file FSSHASHFILE is

used as an intermediate file to map into FSSFILE for updating or

inserting records. This is not necessary in the relational database.

The field STATUS in FSSFILE and FSSSHIPFILE is used to keep

track of the space allocation. In dBASE III PLUS, the APPEND and

INSERT take care of this. Again we can eliminate these from the

files. The field SHIPMENTINFO is used as a pointer to point to the

shipment Information. Actually it is used to create the relationship

between FSSFILE and FSSSHIPMENT. Again we can eliminate this,

because in the relational database, a relation can be created by

using the same primary key.

To put these files in 1NF, the repeating groups must be

removed from within these files. After 1st normalization, we have

these new relations:

FSSFILE { Number, ContrDate, Customer.Name, Customer Addr,
Customer ContrNo. Commodity, Pricebase. Lc. Number,
Lc.ExpDate, Lc.ShipDate, Lo Bal, hZc. Amount, TotalShip.
BaiOtShip, ssueBank, DrawSank, MitiNo, NotShipment.

FSSSHIPFILE { InvoiceNo, Name, Origin, Dest, Etd, InvoiceDate,

TotalBales, TotalNet, NofCont }

CONTAINER { Number, Bales. Net }

TIMEOFSHIP { Month, Wgt, Bal, UnltPrice }

60

2. 2 .* ~ . ~ i

2. 2nd Normal Form

We have separated repeating groups from files, and we need

to create relations between these new files. In TIMEOFSHIP, the

field MONTH could be a primary key, but the month can be
repeated every year. So, we can compose NUMBER from FSSFILE
with MONTH as a primary key (indicated with underline), because

TIMEOFSHIP is separated from FSSFILE.

Since we delete SHIPMENTINFO (a pointer) from FSSFILE, we
lost the relation with FSSSHIPFILE. We need to put a field to
connect FSSFILE and FSSSHIPF!LE. We can use the unique NUMBER
in FSSFILE to be the foreign key in FSSSHIPFILE (indicated by

postfixing a s)

The same thing happened with CONTAINER. Number can be

composed from CONTAINER with InvoiceNo from FSSFILE as the

primary key in CONTAINER to avoid those anomalies.

But here we have problems with 1NF. First, the

redundancy, customer records are in FSSFILE, and one customer

can have many sales information records in FSSFILE. So each time

we iave new sales contract with the same customer, we nave to

put in the redundant customer's data. Second, the insertion
anomalies, new customers cannot be added until they have signed
a sales contract with the company. Third, deletion anomalies,

lelete a sales -ontract :ould delete all -he :nformaron)f i

.Ysrorner :t -nat customer has)ni'y one saies ontrac, 'wlttn fl rl

company.

So, we need to go through 2NF, to eliminate the

teoenae.c:es dnientloned above. ",Ve .enarate ,, u:storner y'go-:

.rem FSFr.LE. Now the relations are like the foilowing.

'

61

CUSTOMER { N Addr, ContrNo }

FSSFILE { umbr ContrDate, Commodity, PriceBase,
Lc.Number, Lc.ExpDate, Lc.ShipDate, L.Bal, Lc.Amount,
TotalShip, BalofShip, IssueBanK, DrawBank, MitiNo,
NofShipment }

FSSSHIPFILE { InvoiceNo, Name, Origin, Dest, Etd,
InvoiceDate, TotalBales, TotalNet, NofCont, Numberw }

CONTAINER { Number. InvoiceNo, Bales, Net }

TIMEOFSHIP { Number. Month, Wgt, Bal, UnitPrice }

3. 3rd Normal Form

A relation is in 3NF if it is in 2NF and there is no transitive

dependency. As we can see in the relations above, there is no

transitive dependency. These relations are already in 3NF.

But, the CUSTOMER was just separated from FSSFILE, and

there is no relation between CUSTOMER and FSSFILE. Perhaps the

field CONTRNO in CUSTOMER can be used as a primary key. This

could cause deletion anomalies, if we delete a record in FSSFILE,

we might lose the record of CUSTOMER.

T, avoid these problems, we can :ntroduc2 *he !ieid NAME .n

'STOMER to be a foreign key in FSSFILE (indicated by postlixing

with a *).

CUSTOMER { Name, Addr }

-F.-- "umper, "XntrDate, "omrnocit- • ' ... P-
Lc Nurner. c x.DDateate. 3ai, -krruunr

TotalShip, BalofShip, IssueBank, DrawBanK, MitINo,
NofShipment, Name* }

FSSH!PFILE 'noiceNo, Nare. r-.gr.. -'l t.
:nvoicefDate, TDtaiBaies, - ai"..>o '. n- ,.'; r,5_"

CONTAINER { Number. InvoiceNo, Bales, Net }

62

;,

TIMEOFSHIP { Number. Month, Wgt, Bal, UnitPrice }
..I

,a

We added one more field named PhoneNo to CUSTOMER to

make it more useful. Then we renamed those file names and field

names to make them more meaningful. The final result is:

Customer (a addr, phoneno)

S-Contract (m contrdate, commodity, pricebase,
Icnumber, Icexpdate, Icshipdate, Icbal, Icamount
totalship, balofship, issuebank, drawbank, mitino,
nofshipment, cname*)

Timeofshipment (month. snumebr, wgt, bal, unitprice)

SShipment (zMv1cno, name, origin, dest, etd, invoicedate,
totalbales, totalnet, nofcont, snumber*)

Container (cnumber. inoicenQ, bales, net)

4. New E-R Diagram

Until now, we can draw a new Entity-Relational diagram

(Figure 5-2) with the developed relations. As you can see the

Entity-Relational diagram of the new program is much more

simple and readable than that of the old program.

Ne,.w, Dat2 2tract'r .

Also, we usec1 those reiations to create ciata structures ior

the new program with the convention of dBASE Ill PLUS

I

S-Contract

63

• i. -.. , , , ,.., .:,:.,, -.-. ,."- "- -- .- , , , -- ".- - - . . - . .

ContrDate Character 8
Commodity Character 50

PriceBase Character 80
LcNumber Character 12

LcExpDate Character 8
LcShipDate Character 8
LcBal Numeric 15 2

LcAmount Numeric 15 2

TotaIShip Numeric 15 2

BalofShlp Numeric 15 2

IssueBank Character 30
DrawBank Character 30

MitiNo Character 18
NofShipment Numeric 15

CName Character 25

S-Shipment

el L Width D=
InvoiceNo Character 15

Name Character 25

Origin Character 25

Dest Character 25

Etd Character 8

InvoiceDate Character 8

64

.. ~~~ %

haa

F~gure 5-1 NeO-figrmo ae

Total~aes Numei 5

Totalflae Numeric 15 2

Nof Coritner Numeric

SNumber Character

Timeof Shipment

FieldName Y it
Month Zhar acter

SNumber Character 12

65

Wgt Numeric 15 2

Bal Numeric 15 2

UnltPrice Numeric 15 2

Customer
Fei Na e5WWidth D=c

CNarne Character 25

Address Character 50

PhoneNo Character 13

Container

FedNmWidth

CNumber Character 12

InvoiceNo Character 15

Bales Numeric 15 2

Net Numeric 15 2

B. NORMALIZATION OF PURCHASE

With all the procedures we applied to the Sales, we have a

more simple, more structured relational database of Sales. We can

applied these procedures to the Purchase too. The following are

the results when we went through the Purchase with

normalization, E-R diagram, and redefined data structures.

First, we studv the file structures Jeclared .n the ornginal

program.

FSPFILE { Status, Number, ContrDate, Farmer.Name,
Farmer.Addr, Commodity, T TotalShip, BalofShip,
Nofshipment, ShipmentInfo }

T!MEOFSHIP ,Month, Wt, Bal, .nitPrice

66

71W.mm lrtqknOW11nPWtxWWUW~r' ~ rcjxjnjr

FSPHASHFILE {Status, Number, Name, Commodixy', Link}

FSPSHIPFILE {Status, Truck, NotTruck, TotalBales, TotalNet,
Payment, TotalTruckCost, Link I

TRUCK {MthDay, WgtTicketNo, Bales, Net, Cost}

FSPCONTRACT {Same as FSPFILE I

FSPSHIPREC f Same as FSPSHIPFILE}

1. 1st Normal Form

For the same reasons in Sales, we deleted FSPCONTRACT and

FSPSHIPREC, and eliminated fields STATUS, LINK, SHIPMENTINFO.

Besides, the Number in FSPFILE is purchase number, so we

substituted with the new field name PNumber.

Now, the new file structures look like these:

FSPFILE { PNumber, ContrDate, Farmer. Name, Farmer. Addr,
Commodity, Tifl higQ TotalShip, Balof Ship, Nofshipment

TIMEOFSHIP {Month, Wgt, Bal, UnitPrice}

FSPSHIPFILE { Truck, NotTruck, TotalBales, TotalNet, Payment,
TotalTruckCost

TRUCK { MthDay, WgtTicketNo, Bales, Net, Cost}

AI*2r ,he 's'. Normai Formn

FSPFILE { PNumber, ContrDate, Farmer.Name, Farmer.Addr,
Commodity, TotalShip, BalofShip, Nofshlpment}

7ME-;F_* H'P ' Month, Wgt, Bai, U.nitPrice}

67

FSPSHIPFILE { NotTruck, TotalBales, TotalNet, Payment,
TotalTruckCost I

TRUCK { MthDay, WgtTicketNo, Bales, Net, Cost}

2. 2nd Normal Form

After the 2nd Normal Form and creating the new relations

with newly separated files

FARMER {Name, Addr}

FSPFILE {Number, ContrDate, Farmer. Name, Farmer. Addr,
Commodity, TotalShip, BalofShip, Nofshipment}

TIMEOFSHIP {PNurnber, Month, Wgt, Bal, UnitPrice

FSPSI-IPFILE {PNumber, PShipNo, NofTruck, TotalBales, TotalNet,
Payment, TotalTruckCost }

TRUCK {PNumber, PShlpNo, MthDay, WgtTicketNo, Bales, Net, Cost

3. 3rd-Normal Form

Here we meet the same problem as we did in Sale. The

FARMER just separated from F'SPFILE, we created a new relation

* between FARMER and FSPFILE.

FARMER {Name~, Addr}

FSPFILE { uber ContrDate, Farmer. Name, Farmner. Addr,
Commodity, Tota!Ship, BalotShip, >Jofshipment. >Jamel

TIMEOFSH1P {PNumber. Month, Wgt, Bal, UnitPrice I

FSPSHIPFILE {PNumber. PShiDNo, NofTruck, TotalBales, TotalNet,
?ayment, TotaiTruckCost I

TRUCK { PNumber. PShipNo, MthDay, WgtTicketNo, Bales, Net, Cost

68

Again, we put PhoneNo In FARMER to make it more flexible.
We changed the file names and field names to make them more
meaningful. Then, these are the final result:

Farmer (AInarne. addr, phoneno)

Purchase-.Contract (pnumbr, contrdate, commodity, totalship,
balofship, nofshipment, fname*)

P...Shipment (oshirgno. Dflurber, nottruck, totalbales, totainet,
payment, totaltruckcost)

TimeOf Ship (Dnumber. month, wgt, bal, unitprice)

Truck (pshipno-. Dnurnber, mthday, wgtticketno, bales, net, cost)

4. New E-R Diagram

With the new relations, we draw a new Entity- Relational
diagram, which looks like the E-R diagram of Sales. (on next page)

5. New Data Structures

P-Contract

Field ~Nm Y9 it
PNumber Character 12
ContrDate Character 8
Commodity Character 50

TotalShic Numeric 1

BaiofShip Numeric 15 2

Nof Shipment Numeric 5

FName Character 25

69

Fiur e ha 5- Newe E-ofgr
m o P r h s

P-Shipmentt

Not~ruck Nueia

Totd ae Numer= 15dt 2E

Total~ae Numeric 15 2

Payment Numeric 15 2

70

TruckCost Numeric 15 2

Farmer

FName Character 25

Address Character 50

PhoneNo Character 13

Truck

Field Namen2 Wdt
PShipNo Character 12

PNurnber Character 12

MthDay Character 8

WgtTicketNo Character 12

Bales Numeric 15 2

Net Numeric 15 2

Cost Numeric 15 2

71 ,

S'-.

,°S1

VI. STUDY OF MAINTAINABILITY OF THESE TWO PROGRAMS

The term "maintainability" is used to describe the ability of a

software activity that occurs following the delivery of that

software product to the customer, A software product possesses the

characteristic MAINTAINABILITY to the extent that it facilitates

updating to satisfy new requirements.

A maintainable software product is one which is understandable,

testable, and easy to modify. One must be able to modify the

product to rectify a deficiency or to add new capabilities or to

allow a program to operate on a different computer system.

The maintenance phase of the software life cycle is the time

period in which a software product performs useful work.

Typically, the maintenance phase in the life cycle for a software

product spans longer than that for the development phase.

Maintainability concerning the ability of a software being making

enhancements to that software products, adapting products to new

environments, and correcting problems. Software product

enhancements can involve providing new functional capabilities,

improving user displays, and modes of interaction, or upgrading

the performance characteristics of a system. Adaption of software

to a new environment can involve moving the software to a

different machine. Problem correction involves modification and

revalidation of software to correct errors. Also, the changing

requirements from users can cost much in maintaining software.

In most software engineering studies, it is shown that

maintainence activities actually break into three main

subactivities. They are Perfective Maintenance, Adaptive

Maintenance, and Corrective Maintenance.

72

. - . -]

Perfective maintenance is the act of improving the software'z

function by responding to customer- and programmer-delnea

changes. This is not the portion of software maintenance that is
involved with 0ixing errors But it is the biggest maintenance time

consumer.

Adaptive maintenance is the act of changing software to adapt

to environmental changes. If the computer on which the software

runs is going to get a new version of the operating system, or the
total system data base must have some detail level changes (for

example, if the ZIP code is increased from five to nine digits), the

software must be adapted to meet those changes.

Corrective maintenance is the act of keeping software free from

errors and guarantees the integrity of data.

A. THE ORIGINAL PROGRAM

1. Maintainability of Record Structures

In the original program, the data structures used in defining

files are records- As we know that Pascal has very strong typing,

this means that the records used to define files have domain

constraints, A domain constraint simply states that values of the

". attr-oute .n question ire required to beiong to tne iet of vaiues

* constituting the underlying domain Here we discuss the

maintainability of the original program and the new program by

checking the record structures -nd :ontrol structures

a. AdCd Fieias

Reterr:ng 'o ihe records and :le iec:arations)i -r-e)r:ginal

program in Appendix A, we can summarize them as follow

2ALE'S ?;LE 3E2L.RATPDNS

73

%

fssfile : FILE OF fsstype;

tsshashfile FILE OF entry;

fssshipfile :FILE OF shiptype;

tsscontract, fssdummy :fsstype;

fssshiprec :shiptype;

Now, there are one file (i. e,. fssfile) and two file buffers (i,,

fsscontract, fssdummy) using the same data structures:

fsstype =PACKER RECORD
status :statustype;
number :string [12];
contrdate datetype;
customer :customertype;
commodity :string(50],
pricebase string [80];
ic .Ictype;

timeof ship : ARRAY I. .7] OF tostype;
totaiship, balofship : real;
issuebank, drawbank : string [30];
mitino : string (181;
nofshipment integer;
shipmentinfo :Integer;

END;

Within this record structure, there are five different

user-defined data types:

statustype = (occupied, empty);

datetype = PACKED RECORD
month,
(lay,
year :.nteger.

END,

customntype =PACKED RECORD
name -string[251,
iadr 3tr.ngS0 O1'
contrno 3tringj:-.1,

END)

74

Ictype = PACKED RECORD
number string[12];
expdate,
shilpdate datetype;
bal, amount real;

END;

tostype = PACKED RECORD
month, wgt integer;
bal, unltprice : real;

END;

What is interesting is that Inside Ictype, there is a datetype.

Now datetype has been referenced in a different hierarchical

level. Suppose we are going to put a new field, say TIME, in
.4.

datetype, and suppose that we only use TIME in contrdate, not

in Ictype. This causes some troubles. First, we have to define a

new type, say datetlmetype, which has an extra field that

contains the time of the event. Second, we need to write another

user-defined function to check datetimetype besides function

DATECHECK. Third, we need one more procedure to convert

datetimetype besides procedure DATECONVERT. Fourth, after all

this has been done, we need to recompile the source program,

redebug, recompile, redebug, and so on. Also, within FSSNEW, in

READNEXTINPUT, we have to modify statements to meet the new

data types.

The same problems occur if we want to add one field,

say phone number, to customtype.

Now, lets have a look at another file structure 'n

Sale. w4hich .s referenced by fssshiptil ind fssshiprec

shiptype = PACKED RECORD
status statustype;
Involveno strln(i[t;
name,
origin,
dest string[25],

75

etd,
invoicedate datetype;
totalbales : integer;
totalnet : real;
container : ARRAY (1..201 OF contype,
nof cont : 0..20;
link: integer;

END;

In this file type, three user-defined data types being referenced

statustype = (occupied, empty),

datetype = PACKED RECORD
month,
day,
year: Integer;

END;

contype - PACKED RECORD
number string[12],
bales: Integer;
net : real,

END;

The same situations have to be considered If we want to add fields

into these three data types or the file type

b. Delete Fields

What will happen If we delete the field year from

datetype, or delete contrno from customtype ? How much

trouble can It cause ? The same as above ? Will we lose all the

data keot in that !ieid? Of course There .s no way to Dre/ent *his,

even in experienced programmer 'Ases 3tr'ictured-programming

techniques such as Information Hiding The reason is, Pascal was

designed for general programming environments, peoples can use

Pascal to design an Operating Svstem, or a compiler, or a latabase

system Jr any)trer programs that meet scientific or business

requirements

76

,,',.'- ,. , ,' . %,, ,** , ',,*.,'. . . ,*. . .. *, . .,-,'. . ..' - .' '. ..'.

Same problems happen with Purchase Let's look at

Appendix A

PURCHASE'S FILE DECLARATIONS

fspflle FILE OF fsptype,

fsphashfile FILE OF entry,

fspshlpflie FILE OF fspshlptype,

fspcontract fsptype,

fspshlprec fspshlptype,

Again, there are one file (I e, fspflile) and one file buffer

(1,e , fspcontract) using the same file type

fsptype = PACKED RECORD
status statustvpe,
number stringj112],
contrdate datetype,
farmer farmertype,
commodity string [50],
tlmeofship ARRAY [1 7) OF tostype,
totalship,
balofship : real,
nofshipment,
shlpmentinfo integer,

END,

Within this record type, there are five different user-detlned data

types

statustype = (occupied, empty),

latet pe = -ACKED RECORD
month,
day,
year - Integer,

END;

ar-ner**,vte ?ACKDn RECCRZ
name string[25,
addr string[50],

77

END;

toetype = PACKED RECORD
month, wgt : Integer,
bal, unltprice ' real;

END,

The same discussions can be used here as we used in Sales We

have the same conclusions

B, THE NEW PROGRAM

dBASE III PLUS Is a versatile database manager It is designed to

handle the many business applications in which the user needs to

manage large amounts of repetitive Information, :t can function as

a simple file manager, it can handle the complex issues in relating

files to one another, and it can be used as a complete computer

language like Pascal or BASIC. Its fast development means that

appropriate Jobs can be completed in much less time with dBASE

III PLUS than with Pascal or BASIC. It is possible to stop and start

dBASE III PLUS between instructions and so have a microscope Into

the commands Pascal and BASIC are compiled, so if things go

wrong, it is very nard to discover wriere tnle mistake was made

In dBASE III PLUS, when changes are made the results appear

instantaneously From the dBASE III PLUS prompt, It is possible to

go anvwhere and see anvthing Evervthing 's open to instant

,nspecuton -n :nange -his Kina)t power :an :e ts)wn probie..

dBASE :11 ?LUS nas the aisadlvantage of Derng a nighly accessible

language You can always single step your way through your

command files, make never ending, instantaneous changes with

MODF' :0MMAND, ?tc

dBASE III PLUS has sophisticated yet easy Indexing This means

78

that a Ust can be organized in several different ways

simultaneously and that any item can be found in a traction of a

second in a small list (says less than 2000 records) and only a few

seconds in a list of many thousands of records

dBASE III PLUS is far from a perfect programming system

Fr*-,uently there are bugs where the program simply does not do

what it is supposed to do.

I Maintainability of Record Structures

a Add Fields

dBASE III PLUS fully supports the Relational Data Model

The files are created as two dimensional tables At dBASE III PLUS

dot prompt, just type in

CREATE <filename>

The effect of this action is that dBASE III PLUS sets up a screen

layout, expecting your file-definition entries You just provide

information for that file At this point, dBASE III PLUS wants you

to specify the name of each field you want to define, the tye o!

the field, the length of the field, and the number of decimal

places, if the field is a numeric field Here is an example of file

structure CUSTOMER used in sale

Structure !or database A customer dbf
Number of data records: 0
Date of last update 05/01/87
Field Field Name Type Width Dec
1 ,C.NAME haracter 2E

ADDRESS har-ic:er ,.
3 PHCNENC hParacter Z'
"" Total *" 89

Perhaps you want to change the structure of one of the

existing "Ields, maybe a name :,nange, a typv :hange,)r -ae'-

change), or perhaps you want to add one more field Into the

79

....** .. '9...*:*..,*...* .- ... _. ,*..'.,.. ',

structure Regardless of the kind of change you want, it would

logical to make changes anytime This does not mean, however

that you cannot alter the structure of an existing database that

contains data records You can change structures at any time, in

any database

To add a field In this file structure, enter

USE CUSTOMER <cr> (Not necessary if the file is

already in use)

MODIFY STRUCTURE <cr> or

MODI STRU

This brings up the structure of the file on the screen "her,

use the combination of cursor controls to add a new field When

you have made "he required changes to your structure, vou :an

either enter -tr,-W or -tri-END to save the new structure, or

enter Ctrl-Q or ESC to change your mind or, the changes made

You dont have to re-compile the program

Of course if vou have Just created a new file and there

are no data records in it. you can modifv its structure at "h,.

without any adverse effects Yet, the most important -:onsideratlor.

- Future change Future .:hanges tc data files .n a latabase ,

be antcipated as mu.r as possitie :r.)rder *,- t,:fer .?.e ar2: .r..

restructur8ng required Future changes encompass three areac

hidden Keys. addition of dependent fieids, and nigh- usage 4 a

secor'larv kev

Hfidden Keys

Eacn Of tne reperer'. 'ieias ir a la:a lf-i s,w: e

examined to determined whether an, rigr,*

become key fields in the future the'% ire

data file and added to a new data fije or !ef I .r,:. c,

80

.. ,..,-... . ," v --. ..- .- , .. -- / -'-, , _ ,-" " ',- ,._, ,,-_- ,, , ,. . . ., : ;,.

existing data file, as long as flexibility is provided to

accommodate future key field changes.

Addition of Dependent Fields

The data file structures should have room for the

addition of dependent fields. Even though this will

require reloading of the records whenever new fields

are added, It should not affect the application

program written.

High-Usage of Secondary Key

If you anticipate that a dependent field acting on

occasion as a key field will be used more In the

future, the data file structures and application

programs should be designed to accomodate change.

This may require the dividing of the data file Into

two data files at the very start, or the writing of the

application programs to accept this anticipated future

change

b Delete Fields

To delete a field from data file in database, the above

strategies oan be applied. But when we delete a field, the data

retained for that field will be gone, unless you rename the field

name or copy that record data to some temporary store areas.

To 1elete a field, we have to be cautious about if it is a

:rmrar" e v ,f 1 aile)r not. dIBASE :11 PLUS has a veryr important

;eature cailed INDEXING. Indexing is an inherent part of the

dBASE Ill PLUS scenario. If your goal is to write sophisticated

application programs, you cannot do so without the indexing

In the process of INDEXing, you inform dBASE III PLUS of

81

1e

- \.

li---. -- .

your intention to create an index file on one or more of the fields

of the master file you are working with.

Index file is created as follow

.USE CUSTOMER <cr>

.INDEX ON CNAME TO CUSTINDX <cr>

This results in the creation of a separate file called an

index file, whose name is CUSTINDX. You can provide any

primary name you want. dBASE III PLUS provides the default

extension of .NDX. An index file is Just an index file. It is not a

dBASE III PLUS database. It only contains pointers to the actual

records in the data files.

Now, suppose you want to delete the field called CNAME!

What is going to happen? How can CUSTINDX index on? Will you

lose all the data records? Without that field which the index file

indexed on, you cannot manipulate that file, like DISPLAY, LIST,

PRINT, etc,. You have lost them. So, before you delete CNAME you

might want to re-index the CUSTOMER on another field. You can

then delete CNAME.

82

A *A -

• "" " ' " ''" " ' ' '*-*% ,'- ,'

2. Modifvinz Functions in Pascal Program

Pascal is a block-structured language, and a

block-structured language requires the develpoment of new

run-time techniques. Since Pascal procedures can be recursive,

there can be several Instances of a procedure active at one time.

Hence there must be some provision for the dynamic creation of

activation records to hold the state of these instances. Therefore,
the static "one activation record per procedure" techniques will not

work. Also, we have seen that Pascal provides dynamic memory

management by allocating space for the locals of a procedure on a
stack. This storage is allocated on procedure entry and deallocated

on procedure exit. This means that variables cannot be statically

bound to memory locations as is common in FORTRAN and

assembly languages. In Pascal, activation records represent the

state of an activation. Procedures require both static and dynamic

links. The static link Is set to the environment of definition and the
dynamic link points to Its context. Procedural parameters are

represented by closures. Pascal, Algol, and many other languages

allow procedures and functions to be passed as arguments to other

procedures and functions. Allowing functions to accept and return
other functions leads to a very powerful style of programming,

called functional programming. Functional programming

languages must use a different discipline for the allocation and

aeallocation ot activation recoras.
-Do far, we have studied the various of data typing, various

discipline of memory allocation and various considerations of
procedure calling and return. We know once we have developed a
orogram for one aopiication, .ts tied .A; to that application. :t is

very difficult to add one function or eliminate one function from

85

that program. Because, all the procedures are dependent on each

other, and all the data declarations, all the programming codes

was so program dependent.

B. MODIFIABILITY OF dBASE III PLUS

1. Modifving Data Fields in dBASE III PLUS Program

If you are modifying the structure of an existing database
that has data-records in it, note that you should choose your

modification cautiously. Consider the following situation. Suppose
we have a character field called SNUMBER that has, as data, a

combination of digits and characters, starting with digits, and you
want to change its type to numeric. Since dBASE III PLUS will not

retain character data in a numeric field, at the end of the

modification, we will have lost all the character data from that
SNUMBER field! Only the leading numerics will be retained in the

(new) numeric field. If the original data had leading characters
instead of numerics, nothing would have been retained.

If you change a field name and a field length at the same
time, (either in the same or different fields), note that we will lose

the data for the field(s) with the name change! Since dBASE I

PLUS cannot handle this dual-change at the same time, make one

of the changes first (either one) and then make the other change

to modify the structure.

If you change the name of a field (only), and you want to

save this new structure, dBASE IHl PLUS will ask 7ou a question

"Should data be COPIED from backup for all fieids?(Y/N)". What this
means Is that, by default, when you change the name of a field,

you will lose all your data from all the records for the specific
field, at the end or modification. By responding with a "' "o

question, you can retain all your data for all the records for th-It

86

k* ~ v:~

field, at the end of name-change modification.

To modify the structure of the database you have created,

just enter at the dBASE IlI PLUS dot prompt

X SE CUSTOMER <cr>

.MODIFY STRUCTURE <cr> or

.MODI STRU <Cr>

MODIFY COMMAND is dBASE III PLUS' text editor. It is crude

by text-editing standards, but It has one major advantage: It can

be accessed directly from dBASE III PLUS.

Part of dBASE III PLUS' appeal Is that changes can be made

to a program very quickly. The MODIFY COMMAND allows

programmers to alter command files and test the changes In as

fast a way as possible. It is especially useful after a program Is

written, when the program then needs to be debugged. During this

stage simple bugs, spelling mistakes, and syntax errors

predominate. These usually require only a little thought, and the

ability to get to a text editor quickly is extremely valuable.

Because it is a very simple text editor, the more a change

needs sophisticated editing, the less appealing MODIFY COMMAND

will be. If the programmer wishes; to move commands from one

place to another, to copy groups of command, or to search the

command file, then MODIFY COMMAND Is a poor tool.

The MODIFY COMMAND has about 20 commands. It uses

WordStar-like commands. There are two major problems with

MODIFY COMMAND (in addition to all the features At lacks) r-Irst. t

only allows command files of about 4,096 characters. if

programmers go beyond this limit, then a message will be received

saying that data will be lost if they try to save the tile Second, If

the user deletes a line or if a character is Inserted Into a large file,

It takes an annoyingly long time to rewrite the screen.

87

4P S .

By today's standards, the MODIFY COMMAND is crude, and

many find it a source of irritation. But as an old dBASE and CBASIC

programmer, the MODIFY COMMAND was revolutionary when it

first appeared. Prior to that, all programs had to exit from their

program (e.g.,Pascal), go to the Operating System, then to their

word processor, again to the Operating System, and then back to

the program. Each change in a program required the same lengthy

= journey. All this was obviated by the MODIFY COMMAND.

2. Modifvini Functions in dBASE III PLUS Program

Here what we discuss is how to add or delete an application

to or from a database. There are tremendous benefits to be gained

by subdividing a problem into several command files, But there are

some differences between writing a single command file and

writing a project in several command files. These differences only

concern memory variables in dBASE III PLUS; they Involve no

restrictions on data and index files.

The major benefit is that thinking can be organized by

breaking the job into a series of tasks, each of which is performed

by a command file This makes development and testing easier,

and maKes aadir1g dnd eieting functions or applications eaier

Provided that the task of dividing the main task Into subtasks has

been properly thought through, the program will be more flexible

and charnes " . be easier t o impiernent than if the entire tase.

Tiere ,s --onvent-or. nat a cornmani tile tnat ca,15 anotner

command tile is at a higher level The command file that is called

is at a lower level than the command file calling it dBASE III PLUS

can mo'./? ;c r :lnwn the itruc-ure of -ormand ! "ies, to niner -:r

lower level command files It cannot move sideways

88

When a task Is performed across a number of command files,

dBASE III PLUS generally will perform more slowly than if all

commands were in one file. This is because each command file has

to be opened by DOS when a DO (a command in dBASE III PLUS) is

performed and closed by DOS when a RETURN is performed. The

time taken for this can be considerable. SET PROCEDURE will

circumvent the opening and closing of files by DOS

In the new program, we subdivided the old program into

severel subprograms and tied up with the E-R diagram of the new

program in five levels (see Figure 5-2 and Figure 5-3), they are-

HANAOKA

SALE

NEW SALE CONTRACT

SALE INFORMATION INQUERY

NEW SALE SHIPMENT

SCOMPUTE

SALE INFORMATION INQUERY

LIST CUSTOMER

LIST ALL CONTRACTS OF ONE CUSTOMER

LIST ONE CONTRACT INFORMATION

SALE LiST

PURCHASE

NEW PURCHASE CONTRACT

"TJRC.HASE 'NFORMAT:ON :NOUERY

4E'N - 'JRC-IA;SE 2HIPMENT

?COMPUTE

PURCHASE INFORMATION INQUERY

PURCHASE LIST

PTJRCHt ASE SHIPMEN" -:ST

The name at each line represents a command file. Totally

89

- lit #- , . • • • • .- 4 .r d... ,. - . - • 1 i -*• % . * - .4.. .*'' 4** .. -, N'1 "'. ' " %' , ''%".' %

'I

p

there are 19 command ties in the new program. All the command 4,

files are independent of each other. One command tile has one

function only, so it's easy for programmer to delete a command

file if that function or application is no longer necessary The

programmer can add a function or application to this program by

creating a command file for that function or application.

9

I

90

; .,,-, . *w ,, . **.,, *'.', ,w ., w,.N

VIII CONLUSIONS

The increasing productivity of systems development, the

shortening of the response time of the computer, and the

increasiiK complexity of computer systems, requires effective tools

that will be capable of processing Information. Many changes hiave

occurred In the last five years, These changes are of two

fundamental types. First, people have learned how to better

manage and use database technology. Five years ago, companies

were still wrestling with databases. With no powerful database

language available, they used generic programming languages to

Implement databases. To use generic programming languages to

simulate relational database model or for any Database

Management System Is quite a heavy job. Some advantages of a

database must be sacrIfied due to the lack of database features.

In 1981, this situation changed. Some of the database languages,

based on the relational model, were announced as products. Early

relational products had unacceptable performance. In the last two

years, performance has been Improved. Major manufacturing

organizations have tested relational DBMS products and have found

segments of their workload that can be processed with acceptable

performance. Using a relational DBMS, one company found

application development productivity improvements to be greater

than 100 to 1.

In this study, we examined two programs, one was written in

Pascal, and the other was written In dBASE III PLUS. We can

compare the lines of the source code of these two programs (see

Appendix A and B). The original program is quite a big program,

and due to the programming structure it is difficult to read. In the

91 .

new program, we see that Its clear and it Is well-sequenced so it is

easier to read,

In comparing their maintainability and modifiability, the new
program is much easy to maintain, and easy to modify.

92

THE ORIGINAL PROGRAM (WRITTEN IN APPLE PASCAL)

(S$s+-)
PROGRAM hanaota,
CONST ok = true,

x = 10; '-

max = 30; (a size of hash table ")
pmax = 30;

TYPE characters = string [801,
numbers PACKED ARRAY[1. 131 OF Integer,
menutype = PACKED ARRAY [0 9) OF characters,
Intype = PACKED ARRAY [0 20] OF characters,
datetype = PACKED RECORD

month,
day , .5

year Integer
END;

statustype = (occupied, empty),

tostype = PACKED RECORD
month, wgt integer,
bal, unitprlce real

end;

contype = PACKED RECORD
number 3tri.n 1:1
bales integer,
net : real {lnteger but larger than rnaxint}

END;

customtype = PACKED RECORD
.ame 3trngl2,

'onnwn '3t " t,'.tr

END,

Ictype = PACKED RECORD
number ;tr:.n ,, > .
'?xD~ate,
shipdate aatetype,
bal, amount real

93

* D ~ ~ '. '-' -. ; ~ .:-:*

END,

tsstype =PACKED RECORD
status 'statustype,.
number stririg[121,
contrdate datetype,
customer custom type;
commodity string [501,
pricebase string [80],
Ic Ictype,
timeofshlp -ARRAY l1 7] or tostype,
totaiship, balof ship real,
issuebank, drawbank string [30],
mitino strtng[18],
notshipment,
shlpmentinfo. integer,

(8 Ptr to the shipments ',nto '
END,-

shiptype =PACKED RECORD
status statustype,
Invoiceno string[15],
name, origin, dest string [251,
etd, Invoicedate datetype,
totaibales integer,
totainet real,
container ARRAYji 20] OF contype,
norcont 0 20,
link Integer,

END

entr'y ?ACKED RECORD
status statustype,
number string[12]
name strlng2(."C

. nreger

tarmertype PACKED RECORD
name strlngI25J.
addr strlng~sO1N

trucktype zPACKED RECORD

94

rnthday string [6];
wgtticketno :string[12];
bales :integer;
net, Cost :real;

END;

fsptype =PACKED RECORD
status :statustype,
number :string[12],
contrdate :datetype;*
farmer :farmertype;

'pcommodity strtng [50];
tlmneotshlp ARRAY[1. .7] OF tostype;
totaiship, balof ship :real;
nofshipment,
shipmentinfo :Integer,

END;
I spshiptype =PACKED RECORD

status :statustype;
truck ARRAY[1. 20] OF trucktype.
not truck ,0. .20;
totalbales Integer,
totalnet,
payment,
totaltruckcost -real,
link integer

END,

VAR tspf lie FILE OF tsptype,
tsphashfilie FILE OF entry,
lspsnipfilt '2~F 'spsr.,pvp-,
fspcontract f sptype,
tspshiprecord tspshiptype,
tssqueryrnenu, errorl. error., tssshp-nenu,
sciname, Idstfmenu, I'ssmenu, fspmenu,
fspquervmrernu ! rr~~ !s:new ,rrneru ~ttp

menu LA EXT,
out INTERACTIVyE,
digit SET OF 0 9,
continue, quit bo-o ie ar..

tssshipfle FILE 2DF s I-,,p vv *

fsscontract, fssdummy fsstype;
contractno characters;
shpamtIntons, rate ' real;
fssshiprec : shiptype;

FUNCTION at(l, j: integer) •char: FORWARD;
FUNCTION password: boolean; FORWARD;
FUNCTION datecheck(date: datetype): boolean; FORWARD,
FUNCTION conlnt(line: characters): integer; FORWARD;
FUNCTION conreal(llne: characters): real; FORWARD;
FUNCTION valldate(name: characters): boolean; FORWARD;
PROCEDURE addcomma(VAR line: characters); FORWARD;
PROCEDURE dollarcent(num: real; VAR twodeci: characters);

FORWARD;
PROCEDURE prealtostr (num: real; VAR twodeci: characters);

FORWARD;
PROCEDURE skip(n: integer); FORWARD;
PROCEDURE da teconvert (line: characters; VAR date: datetype);

FORWARD;
PROCEDURE prompt(list: menutype; n: Integer; VAR select: integer);

FORWARD;

('I 05fssl. text ")
('$I 'I fss2 text ')
('I 5. fss2 5.text ')
('SI 5 f ss3. text ")
('$I *5 fspl. text ')
('$I 05 fsp2 text ")

FUNCTION at,
BE3N

GOTOXY(i, 2),
at chr(O)

END,

FLN<:'" :r; va..: ' .

vaildate ,!alsf,
FOx N

r ~ r

Pw-1w1 -,~ -rV V116w w -_a~

END;
validate = true;

END;

FUNCTION conint;
VAR 1, max, temp: integer; item: char;
BEGIN

max '= LENGTH(line); 1 "= 0; temp := 0;
REPEAT

I := +1;
item := line (I];
IF item IN digit

THEN temp := 10*temp+ord(item)-ord('0)
UNTIL (item = '.') OR (i = max);
conint "= temp

END;

FUNCTION conreal;
VAR I, J, max : integer; temp real; item char;
BEGIN

i :1 ; temp 0; max := LENGTH(line);
line "= CONCAT(line, '); [append one blank so not to give the

value range error for no. with no dec pt}
WHILE (I <= max) AND (line [i] <> '. ') DO
BEGIN

item : = line [];
IF item IN digit

THEN temp := 10temp+ord(item) -ord ('0');
I1 +1

END;
= 0; = 1;

(" convert the decimal places if any -)
WHILE (i <= max) DO
BEGIN

item = line[i];
F ftem !N ligit

HEN ern e .

END,
conreal = ternp.

END. "

VA

AD-0194 2? CMPARISO OF PASCAL AND TE DORSE I I I PLUS LANUG IN 23
RIOO'" ING AN INVENTORY NFNREENT SYSTEM() NAVAL

POSTGRADUATE SCHOOL MONTEREY CR T CHANG JUN 97
U SIFIED F/G 12/5 I IEhhhmmhmhmhEE

mhhhE~hhEmh
lllllllllmhll
IIIIEIIIIEIIEK
lllllllllhhll
IIIIIIIIIIIIIl

11u LO

11.25.I~~

MiCrWAflVY RFC'l ITION TEST CHART

,v. w w w .14 'U 'U

BEGIN
FOR I=I TO nDO

writein (out)
END;

PROCEDURE prealtostr;
{to change pseudo-real (i.e. integer>maxint) to strlng}
VAR number : ARRAY (0..91 OF string(l];

tento : ARRAY[0. .5] OF real;
i1 integer;
temp :real;

BEGIN
number[0] 0o';nurnber[l] 'r;number[2] T2;
number[3] :=3';nurnber[4] '4';number(5] ''
number[6] :'6';numbr[7] :='7';number[8J : '8';
nurnber[9] :='9';
tento[0] 1;tento(1] :=10;tento(2] :=100;tento(3] :=1000;
tento (4] :=10000; tento (5] : = 100000.0;
twodeci : ';

FORj :5 DOWNTOO0DO
BEGIN

temnp := TRUNC(temp);
twodeci := CONCAT(twodeci, number RD];
num := num - tento~jl~i

END;

{delete the leading zeroes}
WHILE twodeci[i] = '0' DO

DELETE(twodeci, 1, 1);
END; {preaitostr}

PROCEDURE dollarcent;
VAR whole, dec: string [6];

number :ARRAY[0. .9] OF string [1];
tento ARRAY [0..51 OF real;
ij integer;
temp real;
negative: booiean;

BEGIN
number (0] :='0'; number[(1] '1'; number [2] T='2;
number(3] T;number[14J W; ';number[(5] '5'
number (61 :=6';nurrber[7] 7';nurnber[8] '8';
nurrber[9] :=9";
tento (0] : 1; tento(1] :=10;tento[2] :=100;tento[3] : 1000;

98

tento[4] := 10000; tento[5] := 100000.0;
whole := ' '; dec := '';

IF num < 0
THEN BEGIN

negative = true;
nurn := -1 num;
END

ELSE negative = false;
FOR J :=5 DOWNTO 0 DO
BEGIN

temp := num / tento J];
i := TRUNC(temp);
whole := CONCAT(whole, number [i]);
num : num - tento[j] i

END;
{delete the leading zeroes}
WHILE whole [1 = '0' DO

DELETE(whole, 1, 1);
num. TRUNC(num * 100.0 + 0.5);
FOR j =I DOWNTO 0 DO
BEGIN

temp = num/tento 0];
I := TRUNC(temp);
dec := CONCAT(dec, numberD);
num := num - tentolj] i;

END;
IF negative

THEN twodeci = CONCAT('-', whole,'.', dec)
ELSE twodeci = CONCAT(whole, '.', dec)

END;

PROCEDURE addcomma;
VAR I integer;
BEGIN

IF POS('.',line) = 0
THEN 1= 2
ELSE =5;

WHILE i < LENGTH(line) - 1 DO
BEGIN

INSERT(', ', line, LENGTH(line) -);
I = i+4;

END
END;

99 *

bip1MKURUPI

PROCEDURE dateconvert;
VAR temp: datetype; max, 1: integer; Item :char;
BEGIN

max := LENGTH(line);
temp.month := 0;temp.day := 0;temp.year := 0;

WHILE line[i] <> '/' DO
BEGIN

item := Iine[l];
temp.month temp.month * 10 + ord(item) - ord('0');
1 :=+1;

END;
I := i + 1;
WHILE line[i] <> '/ DO
BEGIN

item.day := temp.day 8 10 + ord(Item) - ord('O');
I := I + 1;

END;
I:=i + 1;
WHILE I <= max DO

BEGIN
item := line[i];
temp.year temp.year * 10 + ord(Item) - ord('0');

I + 1;
END;
date = temp

END; (* dateconvert 8)

FUNCTION datecheck;
BEGIN

IF (date.month < 1) OR (date. month > 12)
THEN datecheck := false

ELSE IF (date-day < 1) OR (date.day > 31)
THEN datecheck := false

ELSE IF (date. year < 60) OR (date. year > 99)
THEN datecheck = false

ELSE datecheck= true
END; (* datecheck *)

PROCEDURE prompt;
VAR ch:char; i:integer;
BEGIN

wrlte(chr(12), at(15, 1), list [0]);
FOR i := I TO n DO

wrlte(at(1,2*(i+l),'. ',list[i]);

100

-~ ~ ~ ' h. ''~ ~ .**V.% ~ - ~ %~~**.'.~' % I

wrlte(at(10,2*(n+2)), 'Selection Please:');
read(KEYBOARD, ch);

WHILE (ord(ch) < ord('1')) OR (ord(ch) > n + ord('O')) DO
BEGIN (* range check for the selection input *)

write(at(10, 2*(n+2), 'Invalid selection', chr(7),chr(7));
write(at(10, 2*(n+3), 'Selection Please:');
read(KEYBOARD, ch)

END; (* WHILE *)
select := ord(ch) - ord('O') (a convert to integer a)

END; (* prompt a)

FUNCTION password;
CONST valid = 'hanaoka';
VAR cnt: integer; secret : string[7];
BEGIN

cnt = 0;
REPEAT

write(chr(12), chr(7), at(10, 5), 'Password ");
readln(KEYBOARD, secret);
cnt := cnt + 1;

UNTIL (secret = valid) OR (cnt = 3);
IF secret <> valid

THEN password = false
ELSE password = true

END; (* password a)

PROCEDURE fdstfpurchase;
VAR quit, successful: boolean;

choice : integer;
BEGIN(a$I- =).

REPEAT
RESET(fsphashfile, '*5: fsphashflie');
successful : = (IORESULT=O);
IF NOT successful

THEN BEGIN
write(chr(12), chr(7), at(0, 4), 'Wrong data diskette in

drive 2');
write(at(5,0), 'put correct one and press <RETURN>');
readin
END

ELSE CLOSE(fsphashfile)
UNTIL successful;
('SI+1)

101

quit false;
REPEAT

prormpt(fspmenu, 4, choice);
CASE choice OF
I fspnew;
2 fspshipment;
3 fspinquery;
4 quit := true
END;

UNTIL quit
END; (* fdstfpurchase a)

PROCEDURE fdstfsales;
VAR quit, successful : boolean;

choice integer;
BEGIN

(*$I-*)
REPEAT

RESET(fsshashflle, '5: fsshashfile');
successful := (IORESULT=o);
IF NOT successful

THEN BEGIN
write(chr(12), chr(7), at(0, 4), 'Wrong data diskette in

Drive 2);
write(at(0,5),'Put correct one and press <RETURN>');
readln

END
ELSE CLOSE(fsshashfile)

UNTIL successful;
(s$I+.)

quit "= false;
REPEAT

prompt(fssmenu, 4, choice);
CASE choice OF
1: fssnew;
2 fssshipment;
3 fssinquery;
4 quit true
END;

UNTIL quit
END; {fdstfsales}

PROCEDURE initialize;
VAR i: Integer;
BEGIN

102

quit := false;
digit = ('0', 1% , 2 , '3', 4, 15, '6', 71,'8', '9'];
RESET(menu, '*4: menu. text');
FOR i:= 0 TO 3 DO

readln(menu, fdstfmenu [i]);
FORI := 0 TO 4 DO

readin(menu, fssmenu [i]);
FOR i:= 0 TO 15 DO

readln(menu, fssnewconmenu (1]);
fspnewconmenu (i: = fssnewconmenu [i];
fspnewconmenu[2] = fssnewconmenu[2];
fspnewconmenu[5] = fssnewconmenu [61;
fspnewconmenu (6] fssnewconmenu [8];
fspnewconmenu [3] ='Farmer name
fspnewconmenu [4] 'Farmer address
FORI := 0 TO 3 DO
BEGIN

readin(menu, errorl [1]);
error2[i] := errorl(i]

END;
error2 [0] = 'Error ! No such contract exists';
FOR i := 0 TO 5 DO

readin(menu, fssquerymenu (1]);
FORI :=I TO6 DO

readin(menu, fssshpmenu [i]);
FOR i := 0 TO 3 DO

readln(menu, sciname [i]);
FOR i := 0 TO 4 DO

readln(menu, fspmenu [I]);
FOR i:= 0 TO 5 DO

readln(menu, fspquerymenu (I]);
CLOSE(menu)

END; (* initialize *)

BEGIN (* main program *)
Initialize;
IF password = ok (* password is the boolean function)

THEN REPEAT
prompt(fdstfmenu, 3, choice);
CASE choice OF
I: fdstfsales;
2 fdstfpurchase;
3 quit true
END

UNTIL quit

103

ELSE wrlte(at(30, 25), chr(7), 'Invalid password');
END.

SEG ENT PROCEDURE fssnew;
('to add new feed stuff contract and setup the data structure

accordingly *)
VAR lineno, J, k, loc, choice, addr, I : integer;

goon, finish, done, locate : boolean;
temp characters; ch:char;
tempdate : datetype;

PROCEDURE tosconvert(line: characters; VAR tos: tostype);
CONST blank = ' ';
VAR temp : tostype;

I,J,max, start : integer;
Item characters;

BEGIN
line '= CONCAT(Ine, 'I');
max LENGTH(line);
WITH temp DO
BEGIN

month := 0; wgt := 0; bal •= 0; unltprice := 0
END;
I := 1; J': 1;
REPEAT

WHILE (llne[i] = blank) AND (I < max) DO
I I + 1;

Item "= COPY(lIne, start, I-start);
CASE J OF
I temp. month = connt(item);
2 : BEGIN

temp. wgt "= conint(item);
temp.bal temp.wgt

END;
3 temp. unitprlce := conreal(item)
END; (* case,9
.j:=J+1

UNTIL (j > 3) OR (i = max);
tos '= temp

END; (s tosconvert a)

PROCEDURE Setfssinfo;
(g get all the information for the new contract *)

104

FUNCTION proceed: boolean;
BEGIN

IF EOF THEN BEGIN RESET(INPUT);EXIT(fssnew) END
ELSE IF (Ineno <> 8) AND (temp =)

THEN BEGIN
proceed := false;
Uneno '= lineno - 1;
END

E IF (lineno = 8) AND (temp = '

THEN BEGIN
proceed := false;
k =k - 1
END

ELSE proceed := true;
END;

PROCEDURE tosinfo;
BEGIN

WITH fsscontract DO
BEGIN

totaship := 0;
write(at(x, 9),' 8. ',fssnewconmenu[8]);
finish := false; k := 0;

REPEAT
k := k + 1;
GOTOXY(x+33, 9+k); readln(temp);
finish := (temp = 'F') OR (temp = 'f
IF (proceed) AND (NOT finish)

THEN BEGIN
tosconvert(temp, timeofship [k]);
IF(timeofship[k]. month < 1) OR

(timeofship (k]. month > 12)
THEN BEGIN

write(at(x+30,9+k),'Error in input,
press <RETURN>);

readln;
wrlte(at(x+30, 9+k), 30);
k := k - 1.;
END

ELSE totalship := totalship + timeofship[k] .wgt

END;
UNTIL (k=6) OR (finish);
baiofship = totaiship;
IF k < 6 THEN BEGIN

wrlte(at(x+30,9+k), ':30);

105

S4.." m"" 'wW ' K ?J ,, #"..,, ,#"#.,.''W*'P...',.-e p.'.' C '.,' et %*'wL ,€ ,. ' r .-. % .. " . ". ' ",_€., . " . -"..,

timeofship [k]. month • 0
(* 0 is endofdate marker *)

END
END
END;

PROCEDURE readnextinput;
BEGIN

WITH fsscontract DO
CASE Uneno OF
1,3,4,5,6,7

BEGIN
write(at(x, ineno), llneno: 2,' , fssnewconmenu[lineno]);
readln(temp);
IF proceed

THEN CASE lineno OF
i number := temp;
3 customer. name := temp;
4 customer. contrno := temp;
5 : customer. addr := temp;
6 commodity = temp;
7 pricebase = temp;
END; (* case

END;
2: BEGIN

write(at (x, 2),' 2. ',fssnewconmenu [2]);
readln(temp);
IF proceed

THEN BEGIN
dateconvert(temp, contrdate);
IF datecheck(contrdate) <> ok

THEN BEGIN
write(at(38, 2), 'Error in input,

press <RETURN>');
readln;
write(at(38, 2), ''30);
lineno lineno - 1;
END

END
END;

8 tosinfo;
10,11

BEGINwrite(at(x, lineno+k-1-), lineno: 2, '.

106

* .. d

fssnewconrnenu (lineno]);
readln(ternp),
IF proceed

THEN BEGIN
dateconvert(temp, tempdate);
IF datecheck(ternpdate) <> ok

THEN BEGIN
write(at(38, llne+k+l), 'Error in input,

press <RETURN>');
readIn;
wrlte(at(38,llne+k+1),' ':30);
Uineno :lneno - 1;
END

ELSE BEGIN
IF lineno = 10

THEN ic. expdate :=tempdate
ELSE ic. shipdate =ternpdate

END
END

END;
12 : BEGIN

wrlte(at(x, lineno+k+1), lineno: 2,'. ',fssnewconmenu~itneno]);
readln(temp);
IF proceed THEN BEGIN

ic. amount : = conreal(ternp);
lc.bal := Ic.amrount

END;
END;

9,13,14,15
BEGIN

write(at(x, lineno+k+l), ineno: 2,'. \ tssnewconmenu~iineno]);
readln(temp);
IF proceed

THEN CASE ineno OF
9 :Ic. number :=ternp;
13 issuebank =temnp;
14 drawbank temnp;
15 mitino =temp;

'

END
END

END (* case
END; (* readnextinput)

PROCEDURE tssrnodify;
(to modify the fsscontract input information a

107

BEGIN
REPEAT

REPEAT
goon.: true;
wrlte(at(55, 22), 'Which line to change:');
readln(llneno); wrlte(at(55, 22),''24);
IF (Uineno < 1) OR (llneno > 15)

THEN BEGIN
write (at(55, 22)) chr(7), 'No such line! Press <RET>');
readin;
write(at(55, 22),' :25);
goon :=false
END)

UNTIL Soon;
(now erase the line to be changed *

IF ilneno <= 6
THEN BEGIN

write(at(38, lineno),' '40);
GOTOXY (38, llneno)
END

ELSE IF lineno = 7
THEN BEGIN

wrlte(at(38,Uneno),' ':80);
GOTOXY (38, lineno)
END

ELSE IF llneno =8
THEN FOR j I= TO k DO

write(at(43,9+j),' ':20)
(a no C3OTOXY here since it is in PROC seven)

ELSE BEGIN
write(at(38, lineno+k+1),' '40);
GOTOXY (38, lineno+k+l)

END;
readnextinput;
write(at(55, 22), 'Ok now9(y/n)');
read(ch);

UNTIL (ch ='Y') OR (ch ' y)
END; (* tssmodlty ~

BEGIN
wrlte(chr(12), at(15, 0), fssnewconmenu [0]);
Ilneno : = 1.;
REPEAT

readnextinput;

108

lineno = lineno + 1;
UNTIL lineno > 15;

fsscontract. notshipment := 0; fsscontract. status := occupied;
write(at(55, 22), 'Input OK?(y/n)');
read(ch); IF (ch = 'N') OR (ch = 'n) THEN fssmodify
END; (* getfssinfo)

BEGIN (* fssnew a)
getfssinfo; (*input all pertinent new sales contract info *)
('go thru the file and make sure that the given contract is

not already in the file *)
RESET (fsshashfile, ' 5: fsshashf ile');
REPEAT

done := true;
I := -1;

REPEAT
I: I + 1;
SEEK(fsshashfile, i);
GET(fsshashfile)

UNTIL (EOF(fsshashfile)) OR
(fsshashfile, number = fsscontract. number);

IF fsshashfile. number = fsscontract. number
THEN REPEAT (* error! same contract already in table a)

prompt(errorl, 3, choice);
CASE choice OF
1 BEGIN CLOSE(fsshashfile);EXIT(fssnew) END;
2 BEGIN CLOSE(fsshashfile);fssinquery END;
3: BEGIN

REPEAT
write(chr(12), at(x, 3), 'Contract number

(<ctrl-c> to quit):');
readln(fsscontract. number);

UNTIL (fsscontract. number <> ' ') OR EOF;
done : = false;
IF EOF THEN BEGIN

CLOSE(fsshashf ile);
RESET(INPUT);
EXIT(fssnew)
END

END;
END; (* case

UNTIL choice = 3
no error so put into the fssfile and fsshashfile ")

ELSE BEGIN

109

(a place the new sales contract info into the fssfile;
place at the first open slot ')

RESET(fssfile, '5: fssflle');
(a put the contract info into the first open slot a)
Ioc := -1;
REPEAT

IOc := IOc + 1;
SEEK(fssfle, loc);
GET(fssfle);

UNTIL (fssflie'. status = empty) OR (EOF(fssflie));
IF EOF(fssfile)

THEN BEGIN
write(chr(12), at(x, 3), 'DOOMESDAY! No more space,

' to add new contract');
write(at(x, 4), 'Must use new diskette. Press<RET>');
readln; CLOSE(fssfile); EXIT(fssnew)
END;

fssfileA := fsscontract;
SEEK (fssfile, loc);
PUT(fssfile); CLOSE(fssflie);
wrlte(at(0,22),i'oc = ',1oc);

(* find open slot in fsshashfile a)

RESET(fsshashfile);
I ::-1;
REPEAT

I := I + 1;
SEEK (fsshashfile, i);
GET(fsshashfile);

UNTIL fsshashfileA. status = empty;

(a put in the information *)
WITH fsshashfileA DO
BEGIN

status := occupied;
number := fsscontract. number;
name := fsscontract. customer. name;
link := loc;
commodity := fsscontract. commodity

END;
SEEK(fsshashfile, i);
PUT(fsshashfile);
CLOSE(fsshashf ile)
END

UNTIL done

110

** %' **.'' . " 2 _.. * .,'.* ;,_ ,%' ."-...- * ", *% -- -"" ,e .'"" """ ' "" "'.p '" ," :

END; (afssnew a

SEGMENT PROCEDURE fssshipment;
VAR choice, loc, sfloc, 1,j, m, old :integer;

done, bankpay, iastship : boolean;
inp : string(i0];
bankpayamt : real;
ch : char;

PROCEDURE computepart;
BEGIN
WITH tsscontract Do
BEGIN

i:= 1; (8 find out which months a
write(chr (12), at(18, 0), 'month oprice');
REPEAT

write(at(20,), tlrneof ship, (i]. month: 2,'
tlrneofship [1]. unitprice: 7:2);

IF timeofship [i]. month = fssshiprec. Invoicedate. month
THEN BEGIN

rn := 1;
rate : = tirreof ship [t] unitprice
END;

I I + 1;
UNTIL (i > 6) OR (timeof ship (t] month = 0);

write(at(20, 1+2), 'Compute the price with the above rate?(y/n)');
read(ch);
IF ch IN ['N', 'ri'

THEN REPEAT
write(at(20,10),'Rate
readln(inp); IF inp <> ''THEN rate : = conreal~irip)

UNTIL ip <>1

ElS IF i > 6
THEN REPEAT

write(at(30, +3), 'But you must give me the rate');
write(at(20, 10), Rate
readln(irip); IF irip <> 'THEN rate := conreai(inp)

UNTIL Irip <> ''

shpamtintons : = fssshiprec. totalnet / 2000;
timeof ship [m] . bal : = timeof ship (m] .bal - shpamntintons;
balofship : = balofship - shpamntlntons;
IF (tlmeofship~m] .bal < 0) AND (timeofship[m+l] .month <>0)

THEN timeof ship [m+1] .bal :=timeof ship [m+i] .bal

Lw X 11a

+ timeof ship [in)bal;
IF balofship < 0

THEN lastshlp : = true;
Ic. bal. := Ic. bal, - shpamtintons *rate;
IF Ic. bai < 0

THEN BEGIN
banikpay := true;
bankpayarnt := -ic.bai
END;

IF nofshlpment <> 0
THEN BEGIN (amore than one shipments so a

i : = 0; J: shipmentinfo; (* link up the shipment rec-ords*)
RESET(fssshiptile, '%: fssshiptile');
REPEAT

SEEK(fssshipfiie,J); old := J;
GET(tssshiptile);
J : fssshiplleA. link;
i :=I + 1;

UNTIL i = nofshipment;
fssshipflle. link : = sfloc;
SEEK (tsshiptile, old); PUT(tssshiptile);
CLOSE(tssshlpt lie); (* put back into the original place a
END

ELSE shipmentinfo, : = sfloc; (* first shipment a
not shipment =not shipment + 1;

END; (with a)
END; (acomputepart a

BEGIN (a fssshipment a
RESET(tsshashtile, *5: tsshashtlle');
REPEAT (atill the correct contract no given a

done :=true;
REPEAT

write(chr(12), at(x, 3), 'Contract number:)
readln(contractno)

UNTIL (contractno <> ' ') OR EOF;
IF EOF THEN BEGIN RESET(INPUT);

CLOSE(! sshashfile); EXIT(tssshiprrent) END;
I =-1;

REPEAT
I : + 1;

SEEK(fsshashfile, 1);
GET (tsshashf ile)

UNTIL (EOF(sshashfile) OR (fsshashtlle> number =coritractno),

IF EOF(fsshashf lie)

112

THEN REPEAT
prorrpt(error2 3 choice);
CASE choice OF*
1 :BEGIN CLOsE(fsshashfile);EXIT(fssshipment) END;
2: BEGIN CLOsE(sshashfiie);fssinquery END;
3 done false
END;
UNTIL choice = 3

ELSE BEGIN (* ok find the contract Info from fssfile)
loc := fsshashtileA. link; CLOSE(fsshashfile);
RESET(fssfIle, 5 fssfile');
SEEK(fssfle, loc);
GET(fssf le); fsscontract =fssfile4;

CLOSE(fssfile)
END;

UNTIL done;

getshipinfo;
(*'put this info into the fssshipfilie)

bankpay := false; lastship := false;
RESET(f ssshlpf le, '5: fssshipfle'); sfloc =-1;

REPEAT
sfloc :=sfioc + 1;
SEEK(fssshipfle, sfloc);
GETQ ssshipfile)

UNTIL (EOV(fssshiptiie)) OR (fssshpfile-. status =empty);

write(at(O,22),'sfioc = ',Sfboc);

IF EOF(fssshipfile)
THEN BEGIN

CLOSE(fssshipfle);
write(chr(12), chr(7), at(x, 2),

'DOOMESDAY no more space In the file');
wrIte(at(x, 3), 'Please call the system designer');
write(at(x, 4), 'Meantime press <RETURN> and

do other work);
readin; EXIT(fssshipment)
END;

I ssshipfile^ := I ssshiprec;
SEEK (f ssshipf le, sfloc);
PUTCf ssshipfile); CLOSE(f ssshipfile);

(* make the necessary computation and save it '
computepart;

Cnow put it into the fssfile '

113

RESETI(fssfile, 105: fssfile');
fsSf fleA : = fsscontract;
SEEK(fssfile, icc), PUT(f ssfile);
CLOSE(fssflie);

shippaperwork
END; (* fssshipment)

SEGMENT PROCEDURE listtoscreen;
VAR k :Integer; twodeci : characters;

PROCEDURE iisttop; (*'half of contract Information)
BEGIN

WITH fsscontract DO
BEGIN

write(chr(12),at(15,0), Feed Stuff Sales Contract Information');
wrlte(at(x, 1), fssnewconmenu (1],' ',number);
write(at(x, 2), fssnewconrrenu[2],' ', contrdate. month, '/e,

contrdate. day, '/', contrdate. year);
write (at (x, 3), fssnewconmenu (3,', %customer. name);
wrIte (at (x, 4), fssnewcornenu (4],', %customer. contrno);
wrlte(at(x, 5), fssnewconmenu (5],' ',customer. addr);
write(at(x, 6), fssnewconmenu (6],' %,commodity);
write(at(x, 7), fssnewconrnenu (7], ,pricebase);

END;
END; (*'iisttop)

PROCEDURE iistbottom;
(' bottom half of fsscontract Info'
BEGIN

WITH fsscontract DO
BEGIN
x := 1;
write(at(x, 9),
'Time of shipment Months Quantity Balance Unitprice');
REPEAT

write(at(29+x, 94-x), timeofship (k]. month: 2, timeofship (lk]. wgt: 10,
tirneof ship (k].bal: 12:2,' $', timeof ship [k]. unitprice: 8:2,);

k :=k + I.
UNTIL (timeofship (k]. month = 0) OR (k >6)
write(at(x, 9+k), 'total shipment : ', totaiship: 8:2);
write(at(x, i0+k), 'balance of shipment : ', balofship: 8:2);
write(at(0,22),'Press <RETURN>'); readin;
wrlte(at(x, 2), fssnewconmenu (to], ',Ic. expdate. month, I',

Ic .expdate. day,',/', ic . expdate.- year);
write(at(x, 3), fssnewconmenu (li] , , ic. shipdate. month, '/',

114

ic. shipdate. day, '/', ic. shipdate. year);
dollarcerat(Ic. amount, twodeci); addcomma(twodeci);
write(at(x,4),fssnewconmenu(12],' S'.twodeci: 10);
dollarcent(lc. bal, twodeci); addcomrra(twodeci);
wrlte(at(x,5),'L/C balance :S',twodect: 10);
write(at(x, 6), fssnewconmenu [13] , Issuebank);
wrlte(at(x, 7), fssnewconmnenu (14] ,drawbank);
write(at(x, 8), faanewconmenu [15],', mitino);
write(at(x, 9), '*of shipment made ,notshipment);

END; (*with *
END; (*listbottom)

BEGIN {listtoscreen}
listtop;
listbottom

END;

SEGMENT PROCEDURE listtoprinter;
VAR 1, k :integer; stri, str2, twodeci characters; P,

PROCEDURE prlisttop; (* half of contract info to printer)
BEGIN

WITH fsscontract DO
BEGIN

skip(4);
writeln(out,' ':20, 'Feed Stuff Sales Contract Information');
skip(3);
writeln(out,' ':10, fssnewconmenu (1],' %,numnber); writeln(out);
writeln(out,' ':10, 1ssnewconmenu(2],' ',contrdate. month,'/',

contrdate. day, '/, contrdate.- year); writeln(out);
writein~out,' ':10, fssnewconmenu [3],' ',customer. name); -

writeln(out);
wrlteln(out,' '10, tssnewconmenu [4],' ,customer. contrxo);
writeln(out);
writein~out,' '10, fssnewconmenu [5],' 'customer . addr);
wrtteln(out);
writeln(out,' :10, tssnewconmenu [6],' ,commodity);
writeln(out);
IF LENGTH (prlcebase) < 41

THEN writeln(out,' '10, fssnewconmenu (7],' 'prlcebase)
ELSE BEGIN

1=41;
REPEAT

115

UNTIL prlcebase[1] =a
stri :=COPY(prlcebase, 1,1-1);
str2 =COPY(prlcebase,1+1, LENGT(prcebase)-l);
wrlteln(out,' ':10, tssnewconmenu [7],' ',stri);
wrlteln(out,' :35, str2)
END;

END;
END; (* prllsttop '

PROCEDURE prllstbottomr;
(* bottom half of fsscontract Info to the printer)
BEGIN

WITH fsscontract DO
BEGIN
skilp(2); k 1;
writein (out,' ': 10,
'Time of shipment Months Quantity Balance Unltprlce');
REPEAT

wrlteln(out,' ':39, timeof ship (k] -month: 2, tlmeofship [k].wgt: 10,
timeofship[k].bal: 12:2,' S,timsofship~k].unitprice: 8:2);

k :=k + 1;
UNTIL (timeofshlp[k] .month = 0) OR (k > 6); sklp(2);
wrlteln(out,' '10, 'total shipment :'totalship: 8:2);
writein (out);
wrltein(out,' :10, 'balance of shipment :,balofship: 8:2);
wrlteln(out);
writein~out,' ':£0,fssnewconmenu(9],' ',lc. nurnber);writeln(out);
writein~out,' ':10, fssnewconmenu(£0],' ',lc.expdate. month, '/',

Ic. expdate. day,'/', Ic. expdate. year); writein (out);
wrlteln(out,' ':10, fssnewconmenu (ii],' ',1c. shlpdate. month,'/',

Ic. shlpdate. day,'/', Ic. shlpdate. year); writein~out);
dollarcent(lc. amount, twodeci); addcomma(twodeci);
writein~out, ' ': 10, fssnewconmenu (12],' 5', twodeci: 10);
wrlteln(out);
dollarcent(Ic. bal, twodeci); addcomma(twodeci);
writeln(out,' ': 10, 'L/C balance :',twodeci: 10);
wrlteln(out);
wrtteln(out,' ':10, fssnewconmenu (13],' ',issuebank); writein(out);
writeln (out,' ':10, fssnewconmenu (14],' ',drawbank); writeln(out);
writeln(out,' '10, fssnewconmenu. [15], ' ', mitino); writeln(out);
writeln(out,' ':0,'* of shipment made :'nof shipment);

END; (Owith 8)
END; ('prlistbottom '

BEGIN {llsttoprlnter}

1 16 - -

prllsttop;
prlistbottom

END;

SEGMENT PROCEDURE tssreslduecheck;
VAR J,opencnt : Integer;
BEGIN

wrlte(chr(12)at(x,2), Available Space'); opericnt 0;
j :w 0; RESET(tssflle, *5:tssfile');

SEEK (1ssflie);
GET (fssfile);
wrlte(at(x, 4), 'Contract file:)
WHILE NOT EOF(fsstlle) DO
BEGIN

IF fsstleA. status =empty
THEN BEGIN

opencnt opencnt + 1;
wrlte(at(x+19, 4), opencnt: 3)
END;

J :=j + 1;
SEEK (fssfilej;
GET (f$ssile)

END;
CLOSE(fsstile);
opencnt,: 0; J := 0;
write(at(x, 5), Shipment tile:)
REsETmssshlpfile, '10: fssshlpfile');
SEEK (fssshlpffie, J); GET (fssshipfile);
WHILE NOT EOF(fssshlpfle) DO
BEGIN

IF fssshipfileA. status = empty
THEN BEGIN

opencnt ;= opencnt + 1;
write(at(x+19, 5), opencnt: 3)
END;

j := J + 1;
SEEK (fssshipf lie, J);
GET(f ssshipf lle)

END;
CLOSE(I ssshipfle);
wrtte(at(0, 7), 'Press <RETURN>'); readIn

END; If ssresiduecheck}

SEGMENT PROCEDURE fsslnquery;

117

VAR I, J, k, nurr, entries, loc :Integer;
compname : string (25];
quit : boolean;
customlist : Intype; ch : char; twodeci, stri, str2: characters;

PROCEDURE listship;
VAR surnbales, sumnnet; real;
BEGIN

WITH fssshlprec DO
BEGIN

wrlte(chr(12), at(0, 0), 'Shipname :'%name);
wrlte(at(38, 0), 'iv date:', Involcedate. month, 'A'

Invoicedate. day, '/', invoicedate. year);
wrlte(at(6O, 0), 'etd:', etd. mot,'/', etd. day,/'', etd. year);
wrlte(at(O, 1), 'origin port: ',origin);
write(at(38, 1), destination port: ', dest);
wrlte(at(18, 2), 'Contaner*', at(33, 2), Bales', at(41, 2), Net wgt');
surrbales := 0; surrinet := 0;
FOR k 1 TO nofcont DO

WITH container (k] DO
BEGIN

surnbales :=sumbales + bales;
surnnet =surnnet + net;
preaitostr(net, twodeci); addcomma(twodecto;
write(at(18, 3+k), number, at(31, 3+k), bales: 5, at(40, 3+k),

twodecl: 7)
END;

prealtostr(sumbales, stri); addcornma(stri);
prealtostr(sumnet, str2); addcomma(str2);
writeln(at(31, not corit+4), -- ' at(40, not cont+4), -------
writein(at(26, nofcont+5), stri. 10, str2. 11);

END
END;

PROCEDURE prllstship;
VAR sumnbales, sumnet real;
BEGIN
WITH tssshiprec DO
BEGIN

write(at(0, 20),' :70);
write(at(0, 22), Need a printout? (yin)');
read(ch); IF EOF THEN BEGIN RESET (INPUT),EX 7(pr listship) END;
IF ch IN [-Y','y]

THEN BEGIN

lie.

write(at(0, 22), 'Turn on the TEC and press <RETURN>');
readin;
REWRITE(out, PRINTER: ');sklp(4);
wrlteln(out , Shipment No. ', nur,

Invoice No.', fssshiprec. invoiceno); writeln(out);
wrtteln(out,' shipname: ', name); skip(2);
writeln(out,' invoice date: ', invoicedate. month, '/',

invoicedate. day, '/', invoicedate. year); writein (out);
writeln(out,' etd :',etd. month,'/', etd. day, 'A

etd. year); skip(3);
writeln~out,' '18, Container *'''5, 'Bales',' '5,

'Net wst'); skip(2);
surnbales :=0; surnnet :=0;
FOR k : = 1 TO nofcont DO

WITH container [k] DO
BEGIN .

surnbales :=surnbales + bales;
sumnet : = sumnet *- net;
prealtostr (net, twodeci); addcornma (twodeci);
wrtteln(out,' '18,numnber: 12,' '5,bales:5,' '5,

twodeci: 7);
writeln(out);

END;
prealtostr(sumbales, str 1); addcomma(str 1);
prealtostr(surrnet, str2); addcomma(str2);
writein~out,' ':35,'-5--- ,-------)
writeln(out,' '30, strl: 10, str2: 12);

CLOSE (out)
END

END; (awith a
END;

PROCEDURE onecontrinfo; 4

PROCEDURE case3sub;
BEGIN

wrlte(at(O, 22), Need a printout? (y/n)'); read(ch);
IF EOF THEN BEGIN RESET(INPUT); EXIT (case3sub) END;
IF ch IN (mY', y']

THEN BEGIN
wrlte(at(0, 22), 'Turn on the TEC and press <RETURN>');
readin; REWRITE(out, 'printer:');
listtoprlnter; CLOSE (out)
END;

IF fsscontract. notshipment > 0 THEN

119 '

BEGIN
write(at(O, 22),

'Like to see all shipments In sequence?(y/n/<ctrl-c> to qluit)');
read(ch); IF EOF THEN BEGIN RESET(INPUT); EXIT(case3sub) END;
IF ch IN ['Yy

THEN BEGIN
: = 0; j : = fsscontract. shipmentinfo;

R.ESET(fssshipfile, '#5: fssshiptlle');
REPEAT

SEEK(fssshipfile);
GET(fssshipfile);
j : ssshipfileA. link; i i + 1; nurn : I;
tssshiprec : = fssshipfileA;
listship; prlistship;
IF i < fsscontract. riotshipment

THEN BEGIN
write(at(0, 22),
'Want to see next shipment?(y/n)')
read(ch); write(at(0, 22), ' : 50);
IF EOF THEN BEGIN CLOSE(fssshipfile);
RESET(INPUT); EXIT(case3sub) END)
END

UNTIL (i = fsscontract. notshipment) OR (ch IN
['N', n)

CLOSE(tssshipfile);
END

ELSE BEGIN
REPEAT

wrlte(at(0, 22),' '50); (*erase previous line a
REPEAT

wrtte(at(O, 22), 'Which shipment(<ctri-c> to quit):')
readln(nurn); IF EOF THEN BEGIN RESET(INPUT);
EXT(case3sub) EN!)

UNTIL (num >= 1) AND)
(num<=tsscontract. nofshiopment);

locate the shipment Info'*)
i = 0; J: = tsscontract. shipmentinf 0;

R.ESET(fssshipf ile, #5: fssshipf lie'),
REPEAT

SEEK (fssshipf Ile, J);
GET(fssshipfile);
j : = fssshlpflileA. link; I :I + 1;

UNTIL 1 = num;
fssshiprec := fssshipftle^; CLOSE (ssshiptlIle);
Iistship; prlistship;

120

write(at(O, 22), 'Like to see another shipment? (y/n)');
read(ch); IF EOF THEN BEGIN RESET(INPUT);
EXIT(case3sub) END

UNTIL cli IN ['N,n']
END (else)

END
END; (case3sub)

BEGIN (onecontrinfo)
REPEAT

wrlte(chr(12), at(x, 3), 'Contract number:');
readin(contractno);

UNTIL (contractno <> .)OR EOF; (*'not empty or terminate)
IF EOF THEN BEGIN RESET(INPUT);EXIT(fssinquery) END;
RESET(fsshashtile, '5:fsshashfile'); i : -1;
REPEAT

I 1+; .

SEEK(fsshashtile, i);
(3ET(fsshashfile)

UNTIL (EOF(f sshashfilie)) OR (fsshashfieA. number=contractno);
IF EOF(fsshashfile) (* not found ,

THEN BEGIN
CLOSE(fsshashfile);
write(at(x, 5), chr(7), 'No such contract in the file');
wrlte(at(x, 7), 'Press <RETURN>'); readin;
END

ELSE BEGIN
CLOSE~fsshashfile);
loc : = fsshashfile. link;
RESET(fssfile, '5: fssfile');
SEEK (f sst le, loc); GET(f ssf le); CLOSE(I ssfle);
fsscontract =fssfile^;

llsttoscreen;
case3sub
END;

END;

BEGIN (fssinquery)
quit =false;

REPEAT
prompt (fssqueryrnenu, 5, choice);
CASE choice OF
1 BEGIN

RESET (fsshash tle, *5: fsshashfile');
write(chr(12),at(15, 0), 'L~st of all customer');

121

entries := 1; customlist[1] := ''; J -1;
REPEAT

REPEAT
J :=J+ 1;
SEEK(fsshashflie, J);
GET(fsshashtile)

UNTIL(EOF(fsshashfile)) OR
(fsshashfileA. status <> empty);

IF NOT EOF(fsshashflle)
THEN BEGIN

I :1 1;
(* check if this record's name is already in

customers array, if not put it *)
while (i<entries) AND (fsshashfileA. name

<> customiist [i]) DO
I + 1;

IF i = entries
(s not in customers array so put it in *)

THEN BEGIN
customlist [i] := fsshashfile^. name;
entries = entries + 1
END;

END
UNTIL EOF(fsshashfile);
CLOSE(fsshashffle); i := 1;
WHILE i <= entries - I DO
BEGIN

IF validate(customlist [i])
THEN write(at(x, i), customlist [i]);

i:= i +1
END;
wrte(at(55, 22), 'Press <RETURN>'); readln

END;
2: BEGIN

REPEAT
write(chr(12), at(x, 3), 'Company name:');
readln(compname)

UNTIL (compname <>) OR EOF;
(*not empty or terminate *)
IF EOF THEN BEGIN RESET(INPUT); EXIT(fssinquery)

END;
RESET (fsshashfile, '5: fsshashfile');
write(chr(12), at(15, 0), 'Contract with ',compname);
J := 2;
FOR i := 0 TO max DO

1

), 122

A

, r4%.,.%v% .i,"t, c,%w *.°.* 5 5
"

". ".C ".C -. '=.' C "' " - . I ." . " - " - -" . - % - " " .,

BEGIN
SEEK(fsshashfile, 1);
GET(fsshashflie);
IF (fsshashflle. name = occupied)

AND (fsshashfile. name = compname)
THEN BEGIN

write(at(x, J), fsshashfileA. number,'
fsshashfile. commodity);

J J + 1;
END;

IF J = 22 (* full screen a)
THEN BEGIN

write(at(55, 22), 'Press <RETURN>');
readln;wrte(chr(12)); j := 2
END;

END; ,

write(at(55, 22), 'Press <RETURN>'); readin;
CLOSE(fsshashfile)

END;
3 onecontrinfo;
4 fssresiduecheck;
5 : quit true;
END; (* case=)

UNTIL quit
END;

SEGMENT PROCEDURE getshipinfo;
VAR k, lineno, xaxis : integer;

ch : char;
finish, goon : boolean;
temp : characters;
tempdate : datetype;

PROCEDURE contconvert(line: characters; VAR cont:contype);
CONST blank = ''"
VAR temp : contype;

IJ, max, start : integer;
gross, tare : real;
item : characters;

BEGIN
line := CONCAT(line,'$');
WITH temp DO
BEGIN

number = blank; net = 0; bales = 0;
END;

123

temp. number =COPY(lne, 1, 12);
DELETE(line, 1, 12);

1:=1; J 1; max LENGTH(line);
REPEAT

WHILE (line [i] = blank) AND (ikrnax) Do
I =I + 1

start : = I;
WHILE (line Eji <> blank) AND (I < max) Do

I =I + 1;
Item := COPY (line, start, i-start);
CASE j OF
1 temp. bales =conint(item);

2 gross =conreal(item);

3 BEGIN
tare := conreal (item);
temp. net :=gross - tare
END

END; (* case a

j :=J + 1
UNTIL (j > 3) OR (I = max);
cont :=temp

END;

FUNCTION sproceed : boolean;
BEGIN

IF EOF THEN BEGIN RESET(INPUT);EXIT(getshipinfo) END
ELSE IF temp= '

THEN BEGIN
sproceed := false;
lineno :=lineno -1
END

ELSE sproceed := true
END;

PROCEDURE nextshipinput;
BEGIN

WITH tssshiprec DO
BEGIN
CASE lineno OF
1 BEGIN

write(at(O, 0),' Si. , fssshpmenu (1]);
readln(temp);
IF sproceed THEN name =temp

END;
2,3 :BEGIN

124

IF Uineno = 2 THEN xaxis 38 ELSE xaxis 60;
write(at(xaxis, 0), lineno'.', fssshpmenu [lineno]);
readln(terrp);
IF sproceed

THEN BEGIN
dateconvert(terrp, tempdate);
IF datecheck(terrpdate) <> ok

THEN BEGIN
write(at(xaxis, 0), 'Error, press <RETURN>');
readin;
write(at,(xaxis, 3),'':20);
Uneno =lineno - I
END

ELSE IF lineno =2

THEN invoicedate := tempdate
ELSE etd := tempdate

END
END;

4,5 BEGIN
IF lineno = 4 THEN xaxis 0 ELSE xaxis :=38;
write(at(xaxis, 1), lineno,'. ', fssshomenu [lineno]);
readln(temp);
IF sproceed

THEN IF lineno = 4
THEN origin := temp
ELSE dest =temp

END;
END; (* case a
IF (lineno >= 6)

THEN BEGIN
write(at(0, 2),' ',tssshpmenu (6]);
write(at(14, lineno-3), lineno: 2,'.
readln(temp);
finish : = (temp = 'FP) OR (temp =f)

IF (sproceed) AND (NOT finish)
THEN BEGIN

contconvert(ternp, container (lineno-5]);
wrlte(at(56, lineno-3), container (lineno-5]. net: 9: 1);
totalbales :=totalbales+container [llneno-5 . bales;
totalnet =totalnet+container (lineno-5] .net;
IF lineno-5 > nofcont THEN nofcont := Iineno-5
{necessary not to reset not cont when called from

shiprnodlty }
END;

IF finish

125 '

THEN write(at(14, lineno-3),, ': 60)
END {if}

END {with}
END; (* nextshipinput *

PROCEDURE shiprnodify;
BEGIN

REPEAT
REPEAT

Soon :=true;
write(at(55, 22), 'Which line to change:');
readln(lineno); write(at(55, 22),' :24);
IF (lineno < 1) OR (lineno > fssshiprec. nofcont + 5)

THEN BEGIN
write(at(55, 22), chr(7), 'No such line,

press <RETURN>');
readln;write(at(55,22)'':25); goon :=false
END

UNTIL goon;
(now erase the line to be changed *

IF lineno <= 5
THEN CASE lineno OF

I : write(at(11i0),' :25);
2 : write(at(49,0),, :11);
3 :write(at(66,O),1 :12);
4 : write(at(14, 1),' :24);
5 : write(at(57,1),' :23);
END (* case *)

ELSE WITH fssshiprec DO
BEGIN
write(at(18, lineno-3), '60);
totalbales := totalbales - container [lineno-5]. bales;
totalnet :=totalnet. - container [lineno-5]. net
END;

(read the modifying line)

nextshipinput;
write(at(55, 22), 'O1k now? (yin)'); read(ch)

UNTIL ch IN ['Yy']
END; (* shipmodify

BEGIN (* getshipinfo a
lineno : = 1; fssshiprec. totalbales := 0;
tssshiprec. totainet := 0; tssshiprec. nofcont =0;
REPEAT { get the invoice number I}

write(chr(12), at(x, 3), 'Invoice number (append):',

126

F. a.WW WN YW VW = An

readln(fssshiprec. invoiceno); scnrt.ume)
fssshiprec. invoiceno: =CONCAT(fsscontract. number,

fssshiprec. invoiceno);
write(at(x, 5),'Invoice no. will be ', fssshiprec. invoiceno);
write(at(x, 6), Correct? (y/n)');
read (ch)

UNTIL ch IN ['Y,'y']; writeln(chr(12)); finish false;
REPEAT

nextshipinput;
lineno lineno + 1

UNTIL (lineno > 25) OR (finish);
fssshiprec. status := occupied;
write (at (55, 22),' Input OK? (y/n),); read (ch);
IF ch IN ['N', 'n'] THEN shipmodify

END;

SEGMENT PROCEDURE shippaperwork;
VAR calendar : ARRAY (1.. 12] OF string [9];

formati, format2, forrnat3, flrsthalf, sechalf: characters;
k, choice, 1, oneline, casecnt :integer;
ch : char;

PROCEDURE signature;
BEGIN

skip (3);
wrlteln(out, '20, 'KOBE MERCHANTILE , INC')writeln(out);
writeln(out,' '20,'signed)
writeln(out,' '20, 'S. HANAOKA, General Manager');

END;

PROCEDURE underline(i,j: integer);
BEGIN

write(out, ':0;
FOR 1. := 1I TO j DO

write(out, -');
writeln(out)

END;

PROCEDURE ashiplnv;
BEGIN

WITH fsscontract, fssshlprec DO
BEGIN

127

Sklp(8);
writeln(out,' ': 65, calend~ar (invoicedate. month],',

Invoicedate. day,', 19', Invoicedate. year); writeiri(out);
writeln(out,' ':7, invoiceno,' :24-LENGTH(invoiceno),

shpamtintons: 7:3,' shorttons of', commodity);
writeln(out);
writeln(out,' '43, name); writeln(out);
writeln(out,' '25, calendar [etd.- month],' 'etd. day, ', 19',

etd. year); writeln(out);
writeln(out,' ':9,origin,' ':36-LENGTH(orgin),dest);
writeln(out);
writeln~out,' '26, customer. name); writeln~out);
writeln(out,' :8, customer. addr); writein~out);
writeln (out,' 1:19, customer. contrno,

':41-LENGTH (customer. contrno), Ic. numnber);
writeln(out);
writeln(out,' ':19,number,' ':41-LENGTH(numiber),mitino);
skip(5);
writeln(out,' :18, commodity);

END
END;

PROCEDURE bshipinv;
BEGIN

WITH fssshlprec, tsscontract DO
BEGIN

format2 : = pricebase;
WHILE LENGTH(format2) > 31 DO
I write pricebase using 2 or 3 lines}
BEGIN

1 = 31;
REPEAT I := I + 1 UNTIL format2[1]='
formati l COPY (format2, 1, 1- 1);
format2 :=COPY(format2, i+1, LENGTH (format2)-i);
writeln(out,' :51, formati)

END;
wrlteln(out, '51, 1 ormat2);
writeln(out, :17, 'Container* Bales Net wgt(lbs)');
writeln~out,' '17,,----------- ----- -----------
FOR k := 1 TO nofcont Do
WITH container [k] Do
BEGIN

prealtostr (net, format 1); addcomma(tormat 1);
writein(out,' ':17,number,' ':14-.LENGTH(number), bales: 4,

:3, formatl: 10)

128

END;
writelri(out,' ':17,'
writeln(out,' '3, nofcont,' X 40 foot');
writeln(out,' :3, 'CONTAINERS');
prealtostr(totalnet, formati); addcomrna(formatlO;
dollarcent (shparntintonsrate, torrnat2); addcomma (format2);
STR(totalbales, format3); addcomrna(format3);
writelri(out,' '17, 'Total', format3:6,' Bales ', formatl: 10,

Ilbso);
writeln(out,' ':17, formati: 9,' lbs=-', shparntintons: 7:3,

shorttoris',' *US', rate: 8:2,' USS', forrnat2: 10);
writeln(out,''7'=---------- ----

:14,'--------) signature
END

END;

PROCEDURE ashippaklist;
BEGIN

WITH fsscontract, fssshiprec DO
BEGIN

sWPM();
wrlteln(out,' '30,'P A C K I N G L I S T')
writein (out,' :30,---------------------) sklp(2);
underlline(3, 74);
wrlteln(out,' ':3, 'INVOICE NO: ',lnvoiceno,

':29-LENGTH(invoiceno), 'DATE: '

calendar [invoicedate. month],' 'invoicedate. day,
19', invoicedate. year); underline(4, 72);

writeln(out, ' '3, 'MESSRS: ', customer. name);
wrlteln(out, ' It1, customer. addr); skip(2); underline(4, 72);
writeln(out, ' '3, 'SHIPPED PER: ', name,' '28- LENGTH (name),

'SAILING ON/OR ABOUT: 'calendar [etd. month] ',

etd. day, ', 19', etd. year); underline(3, 74);
wrlteln(out,' ':3, 'FROM:', origin,' ': 35- LENGTH (origin), 'TO:',A

dest); underline(3, 74);
wrlteln(out,' ':3, 'MARKS & NOS.', ':29, 'DESCRIPTION');
writeln(out,' ''2,'--------------2,----
skip (2);
writein(out,' :44, commodity); writein (out);
writeln(out,' '33, 'Contalner* Bales Net Welght(lbs)'),;
writein~out,' ' :33 -- - - - - -' - -- - - - -
writeln(out);

END
END;

129

PROCEDURE bshippaklist;
BEGIN

WITH fsscontract, fssshiprec DO
BEGIN

FOR k 1 TO notcont DO
WITH container [k] DO
BEGIN

prealtostr (net, formati); addcomma (formati);
writeln(out,' ':33,numbexr,' ': 15-LENGTH(number), bales: 6,

1': 5, formatl: 10)
END;
writeln(out," '33,'----------------------------------
write(out,' '3, notcont,' X 40 FOOT CONTAINERS,);
STR(totaibales, formati); addcornma(formatl);
prealtostr(totalnet, forrnat2); addcomma(format2);
writeln(out,' '9, 'Total', torrnatl: 9,' Bales', format2: 13,' ibs');
writeln(out,' '33, format2: 10,' lbs =', shparntintons: 10: 3,

shorttons');
writeln(out,' :3'----------------
signature
END

END;

PROCEDURE acertorigin;
BEGIN

WITH tsscontract,fIssshiprec DO
BEGIN

skilp(6); wrlteln(out,' '12,'Shunsuke Hanaoka'); writeln(out);
writein~out, Kobe Merchantile, Inc., 861 Six Ave.,',

'San Diego, CA. 92101')
writeln(out);writeln(out,' :30, 'M / ',name); writeln(out);
write(out, ' ': 9, calendar [etd. month], ' ', etd. day,' ,19',

etd. year,' ': 11, customer. name);
IF LENGTH(customer. addr) <= 35

THEN BEGIN
writeln(out', ', customer. addr);
skip(5)
END

ELSE BEGIN
I :=35;
REPEAT i: =i - 1 UNTIL customer. addr[i '

firsthalf :=COPY (customer. addr, 1, 1- 1);
3echalf =COPY (customer. addr, i-4-,

LENGTH (customer. addr) - i)l
writeln~out,', ', firsthalf); writein (out);

130

wrlteln(out,' 'sechalf);
Slap(3)
END;

END
END;

PROCEDURE bcertorigin;
BEGIN

WITH fsscoritract, fssshiprec Do
BEGIN

writeln(out,' ': 46, commodity); skip(3);
FOR k I= TO nofcont DO

writeln(out,' :4, container [k] .number);
skip(2);
writeln~out,' :18, nofcont,' X 40 FOOT%)
prealtostr(totalriet, forrnat2); addcomma(format2);
writeln(out,' '18, 'CONTAINERS'3 '7, forrnat2,' ibs');
skip(2);
writeln~out,' :15, 'THESE COMMODITIES LICENSED BY THE U. S.'

,FOR ULTIMATE DESTINATION%)
writeln(out,' :15, 'JAPAN. DIVERSION CONTRARY TO U.S.

LAW PROHIBITED');
sklp(26-nofcont);
writeln(out,' '5, Chamber of Commerce of San Diego');
writeln~out,' '41, 'California')

END
END; (* bcertorigin)

PROCEDURE aphytocert;
BEGIN

WITH tsscontract, fssshiprec DO
BEGIN

prompt(scinarne, 3, choice); write(chr(12));
skip(9); writeln(out, ' ':33, 'JAPAN'); sklp(18);
writeln(out,' ':28, 'Kobe Merchantile, Inc., 861 Six Ave.,

San Diego, CA 92101')
writeln(out,' :28, customer. name,',');
writein(out,' :28, customer. addr); writein(out);
writeln(out,' ':38, shpamtlntons: 7:3,' shorttons of)
writein (out);
wrlteln(out,'':38, commodity); writeln(out);
writeln(out,' '38, sciname (choice]); writeln(out);
wr~lteln(out,' ':30, notcont,j X 40 Foot Containers');
IF nofcont <= 5 THEN wrltein(out); i -= 0; oneline .0;

REPEAT

131

write(out,' :20);
oneilne : oneline + 5;
REPEAT

i := I +
write(out, container (i]. number: LENGTH (container [i].

number),',')
UNTIL (i = nofcont - 1) OR (I = oneline);
IF I = nofcont - 1

THEN writeln(out, container (nofcont]. number)
EE writeln(out)

UNTIL i = nofcont - 1;
IF nofcont <= 10 THEN writeln(out);

END
END;

PROCEDURE bphytocert;
BEGIN

WITH fsscontract, fssshiprec DO
BEGIN

wrlteln(out,' ':14, 'Imperial County, California');
writeln(out);
wrlteln(out,' ':21, 'Ocean Vessel',' ':25, 'Japan');
skip(3);
write out,' ':15, 'This ', commodity, ', sciname [choice]);
FOR i := I TO LENGTH(scname[cholce]) DO

wrlte(out, chr(8)); { backspace }
FOR I: = I TO LENGTH(sciname [choice]) DO

write(out, ''); { underline } skip(2);
writeln(out,' '15, 'was grown in the Imperial County,

California. The Hessian Fly,');
wrlteln(out);
write(out,' : 15, 'Phytophaga Destructor (Say)');
FOR i := I TO 27 DO

write(out, chr(8));
FORi := I TO 27 DO

write(out, *');
writeln(out,' is not Known to occur in'); writeln(out),
writeln(out, 15, 'the Imperial County, California.');

END {with }
END;

PROCEDURE fumigation;
BEGIN

WITH fssshiprec DO
BEGIN

132

~i

skP(28);
IF nofcont <= 10

THEN FOR k = 1 TO nofcont DO
writein(out,' ': 15, container [k] number)

ELSE FOR k: = I TO 10 DO
BEGIN

write(out,' ':15, container [k. number);
IF k+10 <= nofcont

THEN writeln(out,' ':10, container [k+10]. number)
ELSE writen(out)

END;
IF nofcont <= 10 THEN skip(13-nofcont)

ELSE kp(3);
i := 0;
{ seperate the shipnarme and voyage number }
REPEAT1'=1+1

UNTIL (name(]='V') OR (name[il]='v') OR (i=LENGTH(name));
IF (name[i] <> v') AND (name[i] <> 'V')

THEN BEGIN
REPEAT { get the voy* since not given }

wrlte(chr(12), 'No voyage number, voyage :');
readln(format2)

UNTIL format2 <> ''; format: = name;
write(chr(12))
END

ELSE BEGIN
formatl := COPY(name, 1,1-1);
format2 := COPY(name, 1, LENGTH(name)-1+1)
END;

wrlteln(out,' ':40, format1); writeln(out);
writein(out,' ':21, format2,' ':28, dest)
END { with }

END;

BEGIN
(initialize "

calendar ii = January; calendar[2] - February"
calendar [3] = 'March, calendar[4] = 'April';
calendar [5] := 'May'; calendar [6] := 'June';
calendar (7] := 'July'; calendar (8] : = 'August';
calendar[9] '= 'September'; calendar (10] := 'October';
calendar[n] = 'Nover-ner', calendar[12] ' December,

REWRITE(out, 'PRINTER:');

133

casecnt 0;
REPEAT

casecnt casecnt + 1;
CASE casecnt OF
1" BEGIN

write(chr(12), at(O, 3),
'Turn on the TEC, insert the INVOICE sheet and press

<RETURN>');
readln;

ashipinv;
bshipinv
END;

2 ' BEGIN
write(at(0, 3),
'Now put the PACKING LIST sheet and press <RETURN> ');
readln;
ashippaklist;
bshlppaklist
END;

3 BEGIN
write(at(0, 3),
'Certificate of Origin sheet, Press <RETURN> when ready');
readIn;
acertorigin;
bcertorigin;
END;

4: BEGIN
write(at(0, 3),
'Phytosanitary Certificate sheet, press <RETURN> when

ready ');
readln;
aphytocert;
bphytocert
END;

5 BEGIN
write(at(0, 3),
'Fumigation Certificate sheet, press <RETURN> when

ready ');
readln;
fumigation
END

END;
write(at(0,)s' ':78);
write(at(0, 3), 'Repeat? (y/n)'); read(ch);
IF ch IN ['Y', 'y') THEN casecnt = casecnt - I

134

N%%. *'*t

UNTIL casecnt = 5; CLOSE (out)
END; (*shippaperwork 8

Z-

135-

SEGMENT PROCEDURE fspshipment;
VAR choice, loc, sfloc, i, J, m, old, mm : integer;

done : boolean;
lnp : string[10];
shpamtintons, rate, ratel, rate2, cutwgt : real;
ch : char;

PROCEDURE truckconvert(line: characters; VAR tr trucktype);
CONST blank = ' ';
VAR temp : trucktype;

i, J, max, start : integer;
gross, tare : real;
item characters;

BEGIN
line := CONCAT(line, '$');
WITH temp DO
BEGIN

mthday := blank; wgtticketno = blank; net = 0; bales = 0;
END;
i "= 1; J 1; max "= LENGTH(line);
REPEAT

WHILE(line[i] = blank) AND (i < max) DO
1 :=1 + 1;
start := 1;

WHILE(line[i] <> blank) AND (i < max) DO
i : I + 1;

item := COPY(line, start, i-start);
CASE j OF
1 temp. mthday = item;
2 temp. wgtticket = item;
3 temp. bales := conint(item);
4 gross = conreal(item);
5 BEGIN

tare := conreal(item);
temp. net = gross - tare
END

END; (* case)
j := j + 1

UNTIL (j > 5) OR (i = max);
tr temp

END;

PROCEDURE gettruckrate;
VAR J' integer; inp : characters;

136

BEGIN
J= 0;
REPEAT

j =j + 1;
CASE J OF
1 : BEGIN

write(chr(12),at(0, 2),'Cutting point weight:');
readln(inp);
IF inp <> ' '

THEN cutwgt '= conreal(inp)
ELSE J := J -1

END;
2: BEGIN

write(at(0,4), 'Rate below cut point:');
readln(inp);
IF inp <>

THEN ratel := conreal(inp)
ELSE j :=j - 1

END;
3 BEGIN

write(at(0,6), 'Rate above cut point:');
readin(inp);
IF Inp <>''

THEN rate2 := conreal(inp)
ELSE J := J - I

END;
END; { case }

END; { gettruckrate }

PROCEDURE truckcostcomp;
VAR truckmenu : menutype;

ch : char;
choice : integer;

BEGIN
truckmenu[O] • = 'Truck rate computation';
truckmenu [i] : = 'By shorttons';
truckmenu(2] = 'By bales';
tspshiprec.totaltruccost = 0;
REPEAT

prompt (truckmenu, 2, choice);
write(at(0, 10),'Compute ,truckmenu [choice],' is it correct?(y/n)'); "'.

read(cn)
UNTIL ch TN L'Y',y';l
WITH fspshlprec DO

137

.% .; .?.;. ;:..). . , './. % i . <:.; z . ./ / 6 n..! !i

BEGIN
CASE choice OF
1 • BEGIN

{ get the rates }
REPEAT

gettruckrate;
write(at(0, 22),'Input OK?(y/n)');
read(ch); write(at(0, 22),' ':30)

UNTIL ch IN ['Y','y'];
{ compute }
FOR I = 1 TO noftruck DO
BEGIN

IF truck [i]. net/2000. 0 < cutwgt
THEN truck [I]. cost ' = (truck [i]. net/2000. 0) * ratel
ELSE truck[i], cost '= (truck[i] . net/2000. 0) * rate2;

totaltruckcost : = totaltruckcost + truck [i] cost
END
END;

2: BEGIN
{ get the rates }
REPEAT

gettruckrate;
write(at(0, 22),'Input OK?(y/n)');
read(ch); write(at(0,22),' ':30)

UNTIL ch IN [Y,'y'];

{ compute }
FOR i = I TO noftruck DO
BEGIN

IF truck [i] .bales < cutwgt
THEN truck [i] .cost := ratel
ELSE truck [i]. cost = (truck [i]. bales/cutwgt) * rate2;

totaltruckcost := totaltruckcost + truck [i]. cost
END
END

END; { case }
END, { with }

END;

PROCEDURE fspcompute;
BEGIN
WITH fspcontract DO
BEGIN

: i. * find out which months ")
write(chr(12), at(18, 0), 'month @price');
REPEAT

138

U.. ~ ~ ,% ' - . - . UU* - U U

write(at(20, 1), tirneofship [1] month: 2,' $',
timeofshlp b]. unitprice: 7:2);
+ 1;b

UNTIL (I > 6) OR (timeofship[l] .month =0);

REPEAT
write(at (20, 10), 'Month
readln(inp);
IF inp <>'

THEN BEGIN
mm := conint~inp);
i :=0;
REPEAT

i :=1i+1; m:=;
UNTIL (timeof ship [ii month =mm) OR (1 7);
IF 1= 7

THEN BEGIN
write(at(20, 12), 'No such month listed,

press <RETURN> ';
readln
END

END
UNTIL (timeofship~i] month =mm) AND (inp <> ')

shpamtintons : = fspshiprec. totalnet / 2000;
timeof ship [m].bal : = timeof ship [m].bal - shpamtintons;
balofship : = balofship - shpamtlntons;
fspshiprec. payment : = shpamtlntons * timeofship(m] .unitprice;

truckcostcomp; {compute the truck cost}

{now save into the fspshipfiie first}
fspshipfile4 : = fspshiprec;
SEEK (fspshipf le, sfloc);
PUT (fspshipfile); CLOSE (fspshipf le);

{output some information}
write (chr (12), at (0, 2), ' Total of ',shpamtintons: 8: 3, shorttons');
write (at(0, 4),'Payment is $', fspshiprec. payment: 10:2);
write (at (0, 6),'Press <RETURN>'); readin;

IF (timeofship [i].bal < 0) AND (timeofshlp [m+l] month <> 0)
THEN timeofship[m4-1.bal =tiineofship [m+l] bal +

tiineof ship [m]. bal;

139

p ' jp 111, I'l7 .

=w Knic A L l rAnX7 n nP eM r ulru W "T"

IF nofshipment <> 0
THEN BEGIN (a more thaa one shipments so x)

i '= 0; j = shpmentinfo; link up the shipment records =)
RESET (fspshipfile, '5: fspshipfile);
REPEAT

SEEK(fspshipf le, J); old =
GET(fspshipfile);
J := fspshipfneA.link; 1 = I + 1

UNTIL i := nofshipment;
fspshipfile. link := sfloc;
SEEK (fspshipfile, old); PUT(fspshipflie);
CLOSE(fspshipfile); (* put back into the original place a)

END
ELSE shlpmentinfo = sfloc; (* first shipment a)

nofshipment = nofshipment + 1;
END; (a with a)
END; (f fspcompute a)

PROCEDURE getpurshipinfo;
VAR k, lineno, xaxis : integer;

ch char;
finish, goon : boolean;
temp : characters;
tempdate : datetype;

FUNCTION psproceed : boolean;
BEGIN

IF EOF THEN BEGIN RESET(INPUT); EXIT(fspshipment) END
ELSE IF temp =

THEN BEGIN
psproceed = false;
lineno = lineno - 1
END

ELSE psproceed = true
END;

PROCEDURE nextpurshipinput;
BEGIN

WITH fspshiprec DO
BEGIN

write(at(0, 2),
Date Wgt ticket Bales Gross Tare Net ');

write(at(0, lineno+2), lineno: 2,'.
readln(temp);
finish '= (temp= 'F') OR (temp = 'f';

140

IF (psproceed) AND (NOT finish)
THEN BEGIN

truckconvert (temp, truck [lineno]);
wrlte(at(62, lineno+2), truck [lineno] net: 8: 1);
totalbales := totalbales + truck [lineno]. bales;
totalnet := totalnet + truck [lineno], net;
IF linenc > noftruck THEN noftruck := lineno
{nessary not to reset noftruck when called from

purshipmodify}
END;

IF finish
THEN write(at(0, lineno+2), ''70)

END {with}
END; (a nextpurshipinput a)

PROCEDURE purshipmodify;
BEGIN

REPEAT
REPEAT

goon := true; r

wrlte(at(55, 22), 'Which line to change: '0;
readln(lineno); write(at (55, 22),' ':24);
IF (lineno < 1) OR (lineno > fspshiprec. noftruck)

THEN BEGIN e_-
wrtte(at(50, 22), chr(7), 'No such line, press

<RETURN>');
readln;write(at(50, 22),' :25);goon '= false
END

UNTIL goon;
(a now erase the line to be changed ")
WITH fspshiprec DO
BEGIN

write(at(4, lineno+2),' ':70);
totalbales : = totalbales - truck [lineno]. bales;
totalnet : = totalnet - truck [lineno]. net

END;
(* read the modifying line *)
nextpurshipinput;
write(at (55, 22), 'OK now?(y/n)'); read(ch)

UNTIL ch IN ['Y','y']
END; (* purshipmodify a)

BEGIN (* getpurshipinfo *)
lineno = I; fspshiprec. totalbales = 0;
fspshiprec. totalnet • = 0; fspshiprec. noftruck : = 0;

141 M

write(chr(12)); f clear screen}
REPEAT

nextpurshipinput;
lineno := lineno + 1

UNTIL (lineno > 20) OR (finish);
fspshiprec. status := occupied;
wrlte(at(55, 22), 'Input OK?(y/n)');read(ch);
IF ch IN ['N','n'j THEN purshlprnodify

END;

BEGIN (* fspshipment *
RESET (fsphashfile, '*5: fsphashfilie');
REPEAT (still the correct contract no given s

done :=true;
REPEAT

write(chr(12), at(x, 3), 'Contract number:');
readln (contractno)

UNTIL (contractno <> ')OR EOF;
IF EOF THEN BEGIN RESET (INPUT); CLOSE(fsphashfle);
EXIT (f spshipment) END;

i:=-1;
REPEAT

I =1 = 1;
SEEK~fsphashfle, 1);
GET(fsphashfle)

UNTIL (EOF(fsphashfile)) OR (fsphashfile^. number
contractno);

IF EOF(fsphashfile)
THEN REPEAT

prompt (error2, 3, choice);
CASE choice OF
1 BEGIN CLOSE(fsphashfiie);EXIT(fspshipment) END;
2 BEGIN CLOSE(fsphashfile);fIspinquery END;
3 :done =false

END;
UNTIL choce = 3

ELSE BEGIN (* A 'find the contract info frorn spfile K

oc := fsphashfile^. link; CLOSE (f sphashf le);
RESET (f spf le, ' 5: f spf lie');I
SEEK(fspf Ile, loc);
GET(fspfile); fspcontr act :=fspfieA;
CLOSE(fspfile)
END;

UNTIL done;

142

getpurshlpinfo;
(* put this info into the fspshipfile *)
RESET(fspshipf He, '5: fspshlpftle'); sfloc := -1;
REPEAT

sfloc = sfloc + 1;
SEEK (fspshipffie, sfloc);
GET(fspshipfle)

UNTIL (EOF(tspshipflle)) OR (fspshipfile'. status = empty);
write(at(0, 22), 'sfloc = ',sfloc);

IF EOF(fspshipflile)
THEN BEGIN

CLOSE(fspshipf lie);
write(chr(12), chr(7), at(x, 2),

'DOOMESDAY no more space in the file');
write(at(x, 3), 'Please call the system designer');
wrlte(at(x,4), 'Meantime press <RETURN>

and do other work');
readln; EXIT(fspshipment)
END;

(* make the necessary computation and save it ')
tspcompute;

now put it into the f spfile *)
RESET(fspflle, '5: fspfile');
fspfile& := fspcontract;
SEEK (fspf le, loc); PUT (fspf ile);
CLOSE (fspf le);

END; (* fspshipment *)

SEGMENT PROCEDURE listpurcontr; (fpurchase contract info *)
VAR k : integer;
BEGIN

WITH tspcontract DO
BEGIN

write(chr(12), at(15, 0), 'Feed Stuff Purchase Contract
Information);

write(at(x, 1), fspnewconmenu [1],' ',number);
wrlte(at(x, 2), fspnewconmenu [2],' ',contrdate. month, '/',

contrdate. day, '/', contrdate. year);
write(at(x, 3), fspnewconmenu [3],' ',farmer. name);
write(at(x, 4), fspnewconmenu [4],' ',farmer. addr);
wrlte(at(x, 5), fspnewconmenu [5],' ',commodity);

143

4,; ,,,' ,' ., ...i:i :. .. , •" - " "" "" .4*-"-' . . "' " ". -.4 . .

k=1
write(at(x, 6),
'Time of shipment Months Quantity Balance Unitprice');
REPEAT

write(at(29+x, 6+x), timeot ship [k]. month: 2, timeof ship rk]. wgt
10, timeof ship [k].bal: 12: 2,' $', timeof ship [k].unitprice: 8:2);

k :k + 1
UNTIL (timeorship [k] -month = 0) OR (k > 6);
write (at(x, 6+k), 'total shipment : ', totalship: 8:2);
write(at(x, 7+k), 'balance of shipment: ', balofship: 8:2);
write(at(x, 8+k),'* of shipment made: ', nof shipment)

END;
END; (* listpurcontr *

SEGMENT PROCEDURE prlistpurcontr; (*contract infor to printer *
VAR k : Integer;
BEGIN

WITH fspcontract DO
BEGIN

skip(4);
writeln(out,' ':20, 'Feed Stuff Purchase Contract Information');
skip(3);
writeln(out,' ':10, fspnewconmenu [ii,' %,number); writein (out);
writeln(out,' ':10, fspnewconmenu [2],' ', contrdate. month, '/',

contrdate. day, '/', contrdate. year); writeln(out);
writeln(out,' '10, fspnewconmenu 1[3],' 'farmer, name);
writein (out);
writein (out,' '10, fspnewconmenu [4],' 'farmer. addr);
writeln(out);
writeln(out,' ':10, fspnewconmenu[5],' %,commodity);
writein (out);
skip (2); k : 1;
writein (out,' : 10,
'Time of shipment :Months Quantity Balance Unitprice');
REPEAT

writeln(out,' ':39, timeof ship [k] month: 2, timeof ship [k] wgt: 10,
UTLtimeof ship(k]. bal: 12:2,' $', timeof ship [lk]. unitprice: 3: 2);

UTL(timeof ship (k] month = 0) OR (k > 6); skip(2);
writeln(out,' ':10, 'total shipment :'totalship: 8:2);
writein (out);
writeln(out,' '10, 'balance of shipment : ',balofship:2);
writeln(out);
wrlteln(out,' '1O,'* of shipment made :'nofshipment)

END;

144

END; (* prlistpurcontr '

SEGMENT PROCEDURE purcontrinfo;
VAR 1,J, k, num, entries, loc :integer;

commoname :string [25];
quit :boolean;
comrnodlist :intype;
ch :char;
twodeci, stri, str2, str3 :characters;

PROCEDURE llstpurship;
BEGIN

WITH fspshiprec DO
BEGIN

write(chr(12), at(O, 0), 'Shipment No. ',nurn:2);
wrlte(at(5, 1), 'Date', at(18, 1), *Wgt tkt'*, at(33, i), 'Bales', at(41, 1),

'Net Wgt', at951, 1), 'Cost');
FOR k = 1 TO noftruck DO

WITH truck [k] DO
BEGIN

prealtostr (net, str3); addcomma(str3);
write(at (5, 2+k), mthday, at (18, 2+k), wgtticketno,

at(31,2+k), bales: 5, at(40,2+k), str3:7, cost: 9:2)
END;

STR(totalbales, stri); addcomma (stri);
write(at(O, 4+nof truck), 'Total bales =', stri);
prealtostr (totalnet, str2); addcomna (str2);
write(0, 5+nof truck), 'Total net =', str2);
dollarcent (paymnent, twodeci); addcomma(twodeci);
write(at(O, 6+nof truck), 'Payment =$,twodeci);

dollarcent (totaltruckcost, str34); addcomma(str3);
write (at (0, 8+ nof truck), 'truck cost =$', str30;

END
END;

PROCEDURE printpurship;
BEGIN
WITH fspshiprec DO
BEGIN

write(at(O,22),' ':70);
write (at (0, 22), 'Need a printout? (y/n)');
read(ch); IF EOF THEN BEGIN RESET (INPUT); EXIT (printpurship)
END;
IF ch iN "'Y','"t/

THEN BEGIN

145

wrlte(at(O, 22), 'Turn on the TEC and press <RETURN>');
readin;
REWRITE (out, 'PRINTER: '); skip(4);
writeln(out,' Shipment No. ',num:2);wrlteln(out);
writeln(out,' ':4,'Date',' ':14, 'Wgt ticket',' ': 5 ,'Bales',

' .:5, 'Net Wgt',' ': 5,'Cost'); skip (2);
FOR k := 1 TO noftruck DO

WITH truck~k] DO
BEGIN

prealtostr (net, str3); addcornma (str3);
writelri(out,' ':4mthday,' ':12,wgtticketno. 12,

'':5,bales:5,' ':5,str3:7,' ':5,cost:7:2);
writein (out)

END;
STR(totalbales, stri); addcomma(strl);
prealtostr (totalnet, str2); addcomma (str2);
dollarcent (totaltruckcost, str3); addcomma (str3);
dollarcent (payment, twodect); addcomma(twodeci);
writeln(out);
writeln(out,' ':5, 'Total bales =', strl);writein(out);
writeln(out,; ' 5, 'Total net ='str2); writeln(out);
writeln(out, 1 1:5, 'Payment $'twodeci: 10); writeln(out);
writeln(out,' ': 5, 'Truck cost $'str3: 10);

COLSE (out)
END

END; (with *
END;

PROCEDURE subpurcontr; { for shipment info}
BEGIN

IF f spcontract.- not shipment > 0 THEN
BEGIN
write(at, (0, 22),

'Like to see all shipments in sequence? (y/n/<ctrl-c> to quit)');
read(ch); IF EOF THEN BEGIN RESET (INPUT); EXIT (subpurcontr)

END;
IF ch IN ['Y',',/']

THEN BEGIN
i := O;j .= Ispcontract. shipmeritinfo;
RESET (f spshipf le, "s 5: f spshipf ile');
REPEAT

SEEK (f spshipf ile, J);
GET(fspshipfile);
j : = fspshipfile' link;
fspshiprec :=fspshipfile^;

146

V .M - V - - -- I W

num. i + 1; f used in printing proc}
llstpurship; prlntpurship; i : = I + 1;
IF i < fspcontract. not shipment

THEN BEGIN
write(at(0, 22), 'Want to see next shipment?

(yin) ')

read(ch); write (at(O, 22),'':50);
IF EOF THEN BEGIN CLOSE(tspshipfile);

RESETO(NPUT);

END EXIT(subpurcontr) END

UNTIL (1 = fspcontract.nofshlpment) OR (ch IN ['N', 'n']);
CLOSE (spshipf ile);
END

ELSE BEGIN
REPEAT

wrlte(at(0, 220,''70); (~erase previous line ~
REPEAT

wrlte(at(0, 22), 'Which shipment (<ctrl-c> to quit):');
read(num); IF EOF THEN BEGIN RESET(INPUT);

EXIT (subpurcontr)
END

UNTIL (num>=1) AND
(num<=fspcontract. nof shipment);

(locat the shipment info *
i = 0; J : = fspcontract. shipmentlnf 0;

RESET (spshipf le, '*5: f spshlpf ile');
REPEAT

SEEK (f spshlpf le, A)

GET (fspshlpfile);
j :=fspshipfillC. link; i :i + 1

UNTIL 1: = num;
fspshiprec : = fspshipfiliC; CLOSE (f spshipf le);
Ilstpurship; printpurship;
write(at(0, 22), 'LIke to see another shipment? (y/n)');
read (ch);
IF EOF THEN BEGIN RESET (INPUT); EXIT (subpurcontr)

END
UNTIL ch IN ['y,,Y']
END (* else *

END
END;

BEGIN (* purcontrinfo ~
REPEAT

147

.. a. P P . , , g %%

wrlte(chr(12), at(x, 3), 'Contract number:');
readln(contractno);

UNTIL (contractno <> ')OR EOF; (* not empty or terminate *
IF EOF THEN BEGIN RESET(INPUT); EXIT (purcontrinf o) END;
RESET(1 sphashfile, '5: fsphashfilie'); I:= 1;
REPEAT

1 =1I+ 1;
SEEK (I sphashfile, I);
GET (fsphashfle)

UNTIL (EOF(fsphashfiie) OR (fsphashfllC. number = contractno);

IF EOF(fsphashfile) (* not found a
THEN BEGIN

CLOSE(fsphashfile);
wrlte(at(x, 5), chr(70, 'No such contract In the file');
wrlte(at(x, 7), 'Press <RETURN>'); readin;
END

ELSE BEGIN
CLOSE (1sphashfile);
loc : = tsphashfiie^. link;
RESET (spf ie, ' *5: f spf le');
SEEK (f spf Ile, loc); GET (spf le); CLOSE (f Wtle);
fspcontract =fspf il^;
iistpurcontr;
f prntout to the printer if desired}
write (at (0, 22), 'Need a printout? (y/n)); read (ch);
IF EOF THEN BEGIN RESET (INPUT); EXIT (purcontrinfo) END;
IF ch IN ['Y', 'y']

THEN BEGIN
write (at (0, 22), 'Turn on the TEC and press

<RETURN>');
readin; REWRITE(out, 'PRINTER:');
prlistpurcontr; CLOSE(out)
END;

subpurcontr { to list/print shipment information}
END;

END;

SEGMENT PROCEDURE fspresiduecheck;
VAR J, opencnt : Integer;
BEGIN

write (chr (12), at (x, 2), 'Available Spaces'); opencnt :=0;
write (at (x, 4), 'Contract tile: ');
j :=0; RESET (fspf ile, *5.'tsptiel');
SEEK(fspfiie, j); GET(fspfilie);

148

WHILE NOT EOF(fspfile) Do
BEGIN

IF tspfile^status = empty
THEN BEGIN

opencnt := opencnt + 1;
write(at(x+19, 4), opencnt: 3)
END;

J J + 1;
SEEK (f spf le, J);
GET (1spfile)

END;
CLOSE(I spfile);
opencnt : = 0; J =0;
write(at(x, 5), 'Shipment file:')
RESET (f spshipf le, '*5: f spshipf lie');
SEEK (f spshlpfile, J); GET(fspshipflle);
WHILE NOT EOF(fspshipfile) DO
BEGIN

IF fspshipfile^. status = empty
THEN BEGIN

.5 opencnt =opencnt + 1;
wrlte(at(x+19, 5), opencnt: 3)

:=~+END;
j := j +1;

SEEK (I spshipf le, J);
GET(I spshipfile)

END;
CLOSE@ spshlpfile);
write (at (x, 7), 'Press <RETURN>'); readin

END; I fspresiduecheck }

SEGMENT PROCEDURE tspinquery;
VAR i,j, k, num, entries, loc : integer;

comrnonarne : string [25];
quit : boolean;
commodlist -intype,

5'.'S h :char.

twodeci, stri, str2, str3 ,characters;
BEGIN Q* fspinquery ~

quit :=false;,
REPEAT

promnpt (fspqueryrnenu, 5, choice);
* C"ASE choice OF

I3EGIN
RESET (f sphashf le, '*5: fsphashfilie');

5", 149

write(chr(12), at(15, 0),'List of all commodities');
entries := 1; commodlist[l] := ''; j: -1;
REPEAT

REPEAT
j :=J+l;
SEEK (f sphashf lie, j);
GET(fsphashfile)

UNTIL (EOF(fsphashfile)) OR (fsphashfile'. status <>
empty);

IF NOT EOF(fsphashfile)
THEN BEGIN

(' check if this record's name is already in
commodity array, if not put it s)

WHILE (i < entries) AND
(fsphashfle'^. commodity <> commodlist [t]) DO

I =I + 1;
IF I := entries
(" not in customers array so put it in ")

THEN BEGIN
commodlist [i] =

fsphashfile^. commodity;
entries = entries + 1
END;

END
UNTIL EOF(fsphashfile);
CLOSE(fsphashfile); i := 1;
WHILE i <= entries - I DO
BEGIN

IF validate(commodlist [i])
THEN write(at(x, i), commodlist [i]);
:= I + 1

END;
write (at (55, 22), 'Press <RETURN>'); readln

END;
2 BEGIN

REPEAT
write(chr(12), at(x, 3), 'Commodity name:');
readln (commoname)

UNTIL (commoname <> ' ') OR EOF;
(* not empty or terminate *)

IF EOF THEN BEGIN RESET(INPUT); EXIT(fspinquery) END;
RESET(fsphashflle, "5: fsphashfle');
wrlte(chr(12), at(15, 0), 'Contracts of', commoname);
J := 2;

150

~'d~~-***,* ~ -~ w-"

FOR I :=0 TO max Do
BEGIN

SEEK (1 sph ash! le, 1);
GET (Isphashfile);
IF (fsphashfillc. status =occupied)

AND (fsphashfile^. commodity = commonarne)
THEN BEGIN

write(at(x, j), fsphashfle^. number,' '

fsphashfile^. name);
J J + 1
END;

IF J = 22 (*full screen
THEN BEGIN

wrtte(at(55, 22), 'Press <RETURN>');
readin; write(chr(12); J : 2
END;

END;
wrlte(at(55, 22), Press <RETURN>'); readin;
CLOSE(fsphashfile)

END;
3 purcontrinfo;
4 fspresiduecheck;
5 quit := true;
END; (* case s

UNTIL quit
END;

SEGMENT PROCEDURE fspnew;
(to add new feed stuff contract and setup the data structure
accordingly *)

VAR lineno, J, k, loc, choice, addr, I :integer;
goon, finish, done, located :boolean;
temp :characters;
ch :char;
tempdate :datetype;

PROCEDURE tosconvert (line: characters; VAR tos: tostype);
CONST blank = ''
VAR temp :tostype;

i,max, start :integer;
Item : characters;

BEGIN
line CONCAT (line,,$');
max =LENGTH(line);

WITH temp DO

151

.. ., -- -. w .- : , - '- o
- L -

W .m= 6 - J Er w uy , ;

BEGIN
month 0; wgt 0; bal 0; unitprice 0

END;
I := 1; J 1;
REPEAT

WHILE(line [i] = blank) AND (i < max) DO
i:= I + 1;

Item : = COPY(line, start, -start);
CASE j OF
1 temp. month = conint(item);
2 BEGIN

temp.wgt = conint(item);
temp.bal temp.wgt

END;
3 temp.unitprice := conreal(Item)
END; (* case
J :=J +

UNTIL Qi > 3) OR (i = max);
tos temp

END; (' tosconvert ")

PROCEDURE getfspinfo;
(" get all the information for the new contract *)

FUNCTION pproceed : boolean;
BEGIN

IF EOF THEN BEGIN RESET(INPUT); EXIT(fspnew) END
ELSE IF (lineno <> 6) AND (temp = '')

THEN BEGIN
pproceed := false;
lineno = lineno - 1
END

ELSE IF (lineno = 6) AND (temp = '')
THEN BEGIN

pproceed := false;
k *= k - 1
END

ELSE pproceed = true
END;

PROCEDURE nextpurinput;
BEGIN

WITH fspcontract DO
CASE lineno OF
1,3,4,5:

152

BEGIN
write(at(x, lineno), lineno: 2,. * gfspnewconmenu[lineno]);

readln(temp);
IF pproceed

THEN CASE lineno OF
I number := temp;
3 farmer. name =temnp;

4 :farmer. addr =temp;

5 :commodity =temp;

END* (* case
END;

2 BEGIN
write(at(x, 2),* 2. ',fspnewconmenu [2]);
readln(temp);
IF pproceed

THEN BEGIN
dateconvert(temp, contrdate);
IF datecheck(contrdate) <> ok

THEN BEGIN
write (at (38, 2), 'Error in input, press

<RETURN>');
readin; write(at(38, 2),' ':30);
lneno =lineno - 1
END

END
END;

6 BEGIN
WITH fspcontract DO
BEGIN

totaiship := 0;
write(at(x, 9),' 6. ,fspnewconmenu [6]);
finish :=false; k : 0;
REPEAT

k : + 1;
GOTOXY(x+33, 9+k); readln(temp);
finish :=(temp = 'F') OR (temp = f)
IF (pproceed) AND (NOT finish)

THEN BEGIN
tosconvert (temp7 timeof ship [k]);
IF (timeofship [k] .month < 1) OR

(tlrneofship [k]. month > 12)
THEN BEGIN

write (at (x+30, 9+k),
Error in input, press <RET1URN>');

readin;

153

write(at(x+30,9+k),' ':30); k k - I
END

ELSE totalship : totalship +
timeofship [k]. wgt

END;
UNTIL (k = 6) OR (finish);
balofship = totalship;
IF k < 6 THEN BEGIN

write(at(x+30, 9+k),' ':30);
timeofship [k]. month : = 0
(* o is endofdata marker ')
END

END
END;

END; (* case 8)

END; (* nextpurinput *)

PROCEDURE fspmodify;
(* to modify the fspcontract Input information *)
BEGIN
REPEAT

REPEAT
goon : = true;
write(at(55,22), 'Which line to change:');
readln(lineno); wrlte(at(55,22),' ':24);
IF (lineno < 1) OR (lineno > 6)

THEN BEGIN
write(at(55, 22), chr(7), 'No such line! Press <RET>');
readln;write(at(55, 22), ':25);goon := false
END

UNTIL goon;
(* now erase the line to be changed *)
IF lineno <= 5

THEN BEGIN
write(at(38, lineno),' ':40);
GOTOXY(38, lineno)
END

ELSE FOR j 1 TO k DO
write(at(43,9+j), :20);
(* no GOTOXY here since it is in case 6: 8)

nextpurinput;
write(at(55, 22), 'OK now?(y/n)');
read(ch);

UNTIL (ch = 'Y') OR (oh = 'y')
END; (* fspmodify 8)

154

BEGIN
write(chr(12), at(15, 0), fspriewconrnenu [0]1);
lineno : = 1;
REPEAT

nextpurlnput;
lineno := lineno, + 1

UNTIL lineno > 6;
fspcontract. nofshipment := 0; fspcontract. status =occupied;

wrlte(at(55, 22), 'Input OK?(y/n)');
read(ch); IF (ch = 'N) OR (ch = Wn) THEN fspmodify
END; (*'getfspinfo)

BEGIN (* fspnew '
getfspinfo; (* Input all pertinent new purchase contract info)

(go through the file and make sure that the given contract*
is not already in the file *)

RESET(f sphashfle, '5: fsphashfilie');
REPEAT

done :=true;
-1

REPEAT
I := + 1;
SEEK (fsphashfile, 1);
GET(f sphashfile)

UNTIL (EOF(tsphashfile)) OR
(fsphahsfile*.- number =fspcontract. number);

IF fsphashfileA. number = fspcontract. number
THEN REPEAT (*'error!I same contract already in table'

prompt(errorl, 3, choice);
CASE choice OF
1 BEGIN CLOSE(fsphashfile); EXIT(fspnew) END;
2 BEGIN CLOSE(fsphashfile); fspinquery END;
3 BEGIN

REPEAT
write(chr(12), at(x, 3), 'Contract number

(<ctrl-c> to quit):');
readln(fspcontract. number);

UNTIL (fspcontract. number <> ')OR EOF;
done :=false;
IF EOF THEN BEGIN

CLOSE (f sphashfile);
RESET (INPUT);
EXIT(fspnew)

155

END
END;

END; (* case
UNTIL choice =3

Cno error so put into the fspfile and fsphashflle *
ELSE BEGIN

(place the new purchase contract info into the fspfle;
place at the first open slot '

RESET (f spfile, '5: fspfilie');
(* put the contract info into the f irst open slot)
lbc: -1;
REPEAT

boc oc: + 1;
SEEK(fspfiHe, loc);
GET(f spfile);

UNTIL (fspfile4. status = empty) OR (EOF(fspflie));
IF EOF(fspfile)

THEN BEGIN
write(chr(12), at(x, 3), 'DOOMESDAY! No more space

to add new contract');
write (at (x, 4), 'Must use new diskette.

Press <RETURN>');
readln; CLOSE(fspfiie); EXIT(fspnew)
END;

fspflle^: = fspcontract;
SEEK (fspf le, loc);
PUT(fspfile); CLOSE(fspfle);
write(at(O, 22), 'bc = ',boc);

(find open~ slot in fsphashfile '
RESET(fsphashfilie);
I=-1
REPEAT

i =+ 1;
SEEK (fsphashfile, 1);
GET (fsphashfile)

UNTIL fsphashfile^. status =empty;

(*'put in the information '
WITH fsphashfile^ DO
BEGIN

status := occupied;
number := fspcontract. number;
name := fspcontract. farmer. name;
link . = loc;
commodity =fspcontract. commodity

156

1249,11 4 *.~rk.c W- f

END;
SEEK (fsphashfhle, i);
PUT(fsphashfile); CLOSE(fsphashfile)
END

UNTIL done
END; (mfspnew z

157

APPENDIX B

THE dBASE III PLUS PROGRAMS

program HANAOKA
Original written In Apple Pascal
Rewritten In dBASE III PLUS
Author :To Chang
Date :June 1987
Instructor Prof. Thomas C. Wu

clear all
set talk off
set bell of f
set dele on
set exact on

store .T. to badentry

do while badentry
clear
@ 10, 10 say 'Password (or hit <CR> to exit...)
* 10,50

set escape off
set exact on
set console of f
accept to mpass
set console on

If rnpass =
set escape on
set exact of f
clear
return

endif

if mpass * 'HANACKA'
* 20,20 say 'Incorrect password ... (hit <CR> to retry)'
? chr(7)
wait'
loop

endit
store F. to badentry

158

enddo

MAIN MENU z===

clear
store ' ' to mchoicea 02,15 say '++
0 03,15 say '+ +
@ 04,15 say '+ ABC COMPANY +
0 05,15 asy '+ +
@ 06,15 say '++
@ 08,15 say ' 1. Sales'
@ 10,15 say ' 2. Purchase'
a 12,15 say ' 3. Quit'
0 18,15 say ' Choose one function -- >(1,2,3)';

get mchoice pict 'x'
read

store. T. to mcontinue

do while mcontinue
do case

case mchoice = '1'
do sale

case mchoice = '2'
do purchase

otherwise
store . F. to mcontinue
clear

endcase
enddo
close databases
quit
* <End of HANAOKA>

159

d,
4.., ,- P J' d "'-e".'-. .'. 'e

"
"" ""' . ° e

"
" " d"•" "& " ' " " * -. "",'

*Program SALE. PRG called from HANAOKA
do while .T.
clear
store ' to mchoice
* 02,15 say '++'
@ 03, 15 say '+ +
* 04,15 say '+ ABC Sale Information +
@ 05,15 say '+ +.

@ 06,15 say .++'
0 08,15 say 1. New Sale Contract Entry'
0 10,15 say 2. New Sale Shipment Entry'
@ 12,15 say 3. Sale Information Inquery'
@ 14,15 say 4. Quit'
* 18,15 say Choose one function -- >(1,2,3,4)';

get mchoice pict 'x'
read

do case
case mchoice = '1'

do newsale
case mchoice = '2'

do sshipinfo
case mchoice = T

do s-inquery
otherwise

clear
return

endcase
enddo
2 <End of SALE>

160

Program NEWSALE. PRG called from SALE. PRG
clear 4.

public mtotalship, mnofshIpmnt, rnsnumber
do while .T.

store space(12) to msnumber, mlcnumber
store space(50) to mcommodity, mcustaddr
store space(80) to mpricebase
store space(30) to missuebank, mdrawbank
store space(18) to mmitlno
store space(25) to mcname
store space(13) to mcustphone
store space(8) to mcontrdate, mlcexpdate, mlcshipdate
store '' to manswer
store 0 to mlcbal, mwgt, mbal, mlcamount
store 0 to munitprice, mtotalship, mbalof ship
store 0 to mnofshlpment
store . T. to nogood, notok

do while notok
do while nogood

set confirm on
set format to contract
read
if msnumber =

set format to
set confirm off
store F. to nogoodreturn

endif
use b: scontract index b: a.conindx
find &msnumber
If found()

? chr(7)
0 04,50 say 'Duplicate key '
@ 24,05 say 'Replace? Discard? Inquery?(R, D, I)';

get manswer pict 'x'
read
if upper(manswer) =

store .F. to nogood
@ 24,05 say'

endif
if uppercmanswer) = '

use
close index

161

~ ~ * *'4'(
.> / : " ";. .'.,." ". -. .. ' ', ,. " '.;x ; x ' ... 3, p, 4 3 *,, . . .,. '.. '., , .C ","

do &Jnquery
return

endif
if upper(manswer) -

clear all
endif

else
set format to
store .F. to nogood

endif
enddo
store ' to manswer
? chr(7)
0 24,05 say 'Input OK?(y/n)' get manswer pict 'x'
read
if upper(manswer) = 'Y'

store .F. to notok
endif

enddo

do tmship

use
close index

use b: s.contract index b: sconindx

append blank

replace snumber with msnumber
replace cname with mcname
replace contrdate with mcontrdate
replace commodity with mcommodity
replace pricebase with mpricebase
replace lcnumber with mlcnumber
replace Icexpdate with mlcexpdate
replace icshipdate with mlcshipdate
replace icbal with mlcbal
replace icamount with micamount
replace totalship with mtotalshlp
replace balofship with mbalofship
replace issuebank with missuebank
replace drawbank with mdrawbank
replace mitino with mmitlno
replace nofshipmnt with mnofshipmnt

162

use
close index

select 3
use b: customer index b: custindx
find &mcname
if .NOT. foundo

append blank
replace cnarne with mcname
replace address with mcustaddr
replace phoneno with mcustphone

endif
close databases
clear all
enddo

< End of NEWSALE. PRG >

163

* Program S.INQUERY. PRG called from HANAOKA or
or NEWSALE or SSHIPINFO

do while .T.
clear
clear all
public mcontrno
store 0 to lctr
store ' ' to mchoice
store ' ' to mcontrno
store ' ' to mcompname

@ 02,15 say '++'
@ 03,15 say '+ +
@ 04,15 say '+ SALE INFORMATION INQUERY +'
@ 05,15 say '+ +'

@ 06,15 say '++'
@ 08,15 say 1. List Customer'
o 10,15 say 2. List All Contracts of One Customer'
@ 12,15 say 3. List One Contract Info.'
0 14,15 say 4. Quit'
* 22,15 say Choose one function --- >(1,2,3,4)';

get mchoice pict 'x'
read

do case
case mcholce = '1'

clear
0 00, 10 say' +++++++ Customer List +++++++'
use b:customer index b:custlndx
do while not. eof0

store lctr+1 to ictr
if Ictr >= 19

store 0 to Ictr
wait 'More list on next page...' to memvar
clear

endif
@ Ictr, 02 say 'Name:
O ictr,08 say cname
store lctr+1 to Ictr
0 Ictr,02 say 'Address:
* lctr, 11 say address
store Ictr+1 to Ictr
@ Ictr,02 say 'Phone number:
* lctr, 16 say phoneno

164

WY'

store lctr+1 to lctr
ictr, 10 say

skip
enddo

wait
use
close index

case mchoice = '2'
clear
@ 02,1 say 'Company Name = ' get mcompname;

pict 'xxxxxxxxxxxx'
read
@ 04,15 say 'Contract with
* 04,30 say mcompname
use b: s-contract index b: sconlndx
disp all cname, commodity for cname = mcompname off
wait
use
close index

case mchoice = '3'
clear
0 12,20 say 'Contract Number:' get mcontrno;

pict 'xxxxxxxxxxxx'
read
* 12,37 say mcontrno
select 2
use b:s.contra index b:s.conindx

find &mcontrno
if found P

use
close index
do salelist
0 23,25 say
accept 'Need a printout?(y/n)' to manswer
if upper(manswer) = 'Y'

@ 23,00 say 'Turn on the printer,'
wait
set device to print
do salelist
set device to screen

endif
store to manswer

else
* 20,20 say 'No such contract in the file!!'

165

mwww ww wu wwwww ir Nm NZN.p..~'.~hRW~wJE--5 r -~Y Y '

? ch4-r(7)
watt

endif
use
close Index

case mchoice = A'
return

endcase
enddo

<End of SJINQUERY>

166

Program S..SHIPINFO called from SALE. PRG t

clear
store ' ' to manswer

do while T.
store space(15) to minvoiceno
store space(25) to iname, morlgin, rdest
store space(8) to metd, minvdate
store space(12) to msnumber, mcnumber
store 0 to mtotalbales, mtotalnet
store 0 to mnofcontner, mbales, mnet

set confirm on
set format to sshipment
read
if minvoiceno =

set format to
set confirm off
use
close index
return

endif
@ 24,20 say 'Input OK?(y/n)' get manswer pict 'x'
read
if upper(manswer) = 'Y'

use b: contner index b: contnrdx
append blank
replace cnumber with msnumber;

invoiceno with minvoiceno

do scompute

replace bales with mbales;
net with mnet

store ntotalbales + mbales to mtotalbales
store mtotainet + mnet to mtotalnet
store mnofcontner + I to mnofcontner

. p.-

store F. to mcontinue '.

@ 24,15 say 'More container?(y/n)-->' get manswer pict 'x'
read
if upper(manswer) = Y'

store . T. to mcontlnue

167

o- • " -"4" "
•

="
°

•" " ' , * q -- '•,' "-'" % % % %.%N = % .•° ' ' V' V,%--'%• .J '
. ~'i'%." "

@ 24,15 say'
endif
do while mcontinue

set format to contfmt
read
if mcnumber =

set format to
set confirm off
use
close index
store. F. to mcontinue

else
@ 24,15 say 'Input OK?(y/n)-->' get manswer;

pict 'x'
if upper(manswer) =Y

@ 24,15 say'
appnd blank
replace cnumber with mcnumber;

Involceno with minvoiceno

do scompute

replace bales with mbales;
net with mnet

store mtotalbales + mbales to mtotalbales
store mtotalnet + mnet to mtotalnet
store mnofcontner + 1 to mnofcor.*ner

9 24,15 say 'More containers?(y/n)-->' get;
manswer pict 'x'

read
@ 24,15 say'
if upper(manswer) = 'T

store . T. to mcontinue
else

store .F. to mcontinue
endif

endif
endif

enddo

use b s.shipmt index b: sshipdx

append blank

168

replace invoiceno with minvoiceno;
name with rname;
origin with morigin;
dest with mdest

replace etd with metd;
invoicedat with minvdate

replace totalbales with mtotalbales; .
totalnet with mtotalnet;
nofcontner with mnofcontner;
snumber with msnumbr

use
close Index

endif
enddo.

<End of S.SHIPINFO>
* Program SALELIST.PRG ----- called from S.INQUERY. PRG

clear
set relation to cname into customer

0 01,10 say '=====.Feed Stuff Sale Contract Information-----
* 02,02 say 'Sale Number:'
@ 02,19 say snumber
* 03,02 say 'Contract Date:'
0 03,19 say contrdate
@ 04,02 say 'Customer Name:'
* 04,19 say cname
@ 05,02 say 'Customer Address:'
* 05,19 say address
@ 06,02 say 'Commodity:'
* 06,19 say commodity
* 07,02 say 'Price Base:'
@ 07,19 say pricebase
@ 08,02 say 'Time of Shipment • Months Quantity
@ 08,46 say ' Balance Unitprlce'

store 9 to minctr
set relation to snumber into tmofship

do while .not. eof(tmofship) .and. snumber = mcontrno
* mlnctr,32 say month
@ mlnctr, 39 say wgt
@ mlnctr, 47 say bal
* mlnctr, 57 say unltprlce

169

169 '

store rnlnctr + I to mlnctr
skip

enddo

* rnlnctr+2, 02 say 'Total Shipment:'
@ rnlnctr+2, 22 say totaiship
* rIlnctr+3, 02 say 'Balance of Shipment:'
* mnlnctr+3, 22 say balotshlp
0 mlnctr+4, 02 say VLC number:'
* mlnctr+4, 22 say lcnumber
* mlnctr+5, 02 say 'L/C expire date:'
* rrlnctr+5, 22 say lcexpdate
* mnlnctr+6, 02 say 'l/c shipment date:'
0 mlnctr+6, 22 say lcshipdate
0 mlnctr+7, 02 say 'VC amount:'
* mlnctr+7, 22 say Icamount
@ mlnctr+8, 02 say 'L/C balance:'
0 mlnctr+8, 22 say lcbal
* mlnctr+9, 02 say 'Issue Bank:'
@ mlnctr+9, 22 say issuebank
@ mlnctr+10, 02 say 'Draw Bank:'
0 mlnctr+10, 22 say drawbank
* mlnctr+11,02 say 'Miti number:'
* mlnctr+11, 22 say rritino
* mlnctr+I2,02 say '* of shipment made:'
* mlnctr+12, 22 say nofshipment

return
<End of SALELIST. PRG>

170

* Program SCOMPUTE. PRG called from SSHIPINFO. PRG

public mnet
public mrate

store 0 to mrate

select 2
use b: tmofshlp index b: tmshipdx
set relation to snumber into tmofship

do while .not. eof(tmofship) and. snumber = msnumber
If month = substr(invoicedate, 4,5)

@ 12,15 say 'Rate = '
@ 12,20 say unltprlce
@ 20,10 say 'Compute the price with the above rate?(y/n)';

get manswer pict 'x'
read
if upper(manswer) = 'N'

clear
@ 12,15 say 'Rate = ' get mrate pict '9999999999999.99'

else
store unitprice to mrate

endif

store totalnet/2000.0 to mshiintons
store bal-mshintons to bal

set relation to snumber into s._contra

store balofship-mshintons to balofship
store lcbal-mshintons*mrate to lcbal

endif
skip

enddo
use
close index
return

<End of SCOMPUTE.PRG>

171

.--. *~-j.~-*--~.~-*.v ,-~-* *.*°**]

*Program SALEPRT. PRG---------called from SLINQUERY. PRG

clear
store space(25) to mcname
select 2
use b: scontract index b: s..conindx
find &mcontrno,
0 00,10 say '=====Feed Stuff Sale Contract Information
0 02,02 say 'Sale Number:'
@ 02,19 say snumber
* 03,02 say 'Contract Date:'
* 03,19 say contrdate
* 04,02 say 'Customer Name:'
@ 04,19 say cname
store cname to rncname
select 3
use b: customer Index b: custindx
find &mcname

* 05,02 say 'Customer Address:'
@ 05,19 say address

select 2
@ 06,02 say 'Commodity:'
o 06,19 say commodity
* 07,02 say 'Price Base:'
o 07,19 say pricebase
Le 08,02 say 'Time of Shipment : Months Quantity
@ 08,46 say ' Balance Unitprice'

store 9 to mlnctr
select 4
use b: tmofship index b: tmshipdx
do while .not. eof 0

if snumber = mcontrno
@ mlnctr, 32 say month
Lp mlnctr, 39 say wgt
@ mlnctr, 47 say bal
@ mlnctr, 57 say unitprlce
store rninctr+1 to mlnctr

endif
skip

enddo
select 2
@ mlnctr+2, 02 say 'Total shipment:.'
@ minctr+2, 22 say totaiship
@ mlnctr+3,02 say 'Balance of ship:'

172

r I

@ mlnctr+3, 22 say balofship
@ rnlnctr+4, 02 say 'L/C number:'
@ minctrs4, 22 say lcnumber
@ mlnctr+5, 02 say 'L/C expire date:'
@ mlnctr+5, 22 say Icexpdate
L& mlnctr+6, 02 say 'L/C shipment date:'
@ mlnctr+6, 22 say Icshipdate
@ mlnctr+7, 02 say 'L/C amnount:'
@ mlnctr+7,22 say Icamount
@ mlnctr+8, 02 say 'L/C balance:'
0 mlnctr+8, 22 say lcbal
@ mlnctr+9, 02 say 'Issue Bank:'
@ mlnctr+9, 22 say issuebank
@ mlnctr+10, 02 say 'Draw Bank:'
@ mlnctr+10, 22 say drawbank
@ mlnctr+11,02 say 'Mitt number:'
L& rlnctr+11, 22 say rnltino
@ mlnctr+12, 02 say '* of shipment made:'
@ mlnctr+12, 22 say nofshipment
eject
return

< End of SALEPRT. PIG >

173

Program SALELIST. PRG -------- called from S.INQUERY. PRG

clear
store space(25) to mcname
select 2
use b: s.contract index b: s.conindx
find &mcontrno
@ 01,10 say '===== Feed Stuff Sale Contract Information
@ 02,02 say 'Sale Number:'
* 02,19 say snumber
@ 03,02 say 'Contract Date:'
@ 03,19 say contrdate
@ 04,02 say 'Customer Name:'
@ 04,19 say cname
store cname to mcname
select 3
use b:customer index b:custindx
find &mcname

@ 05,02 say 'Customer Address:'
@ 05, 19 say address

select 2
* 06,02 say 'Commodity:'
@ 06,19 say commodity
@ 07,02 say 'Price Base:'
@ 07,19 say pricebase
@ 08,02 say 'Time of Shipment Months Quantity
@ 08, 46 say ' Balance Unitprice'

store 9 to mlnctr
select 4
use b' tmofship index b: tmshipdx
do while . not. eof0

if snumber = mcontrno
@ mlnctr, 32 say month
4 mlnctr,39 say wgt
@ mlnctr, 47 say bal
@ mlnctr, 57 say unitprice
store minctr+1 to minctr

endif
skip

enddo
select 2
f mlnctr >= I2

wait 'More informatlons on next page...' to memvar

174

7..

store 0 to mlnctr
clear

endif
0 mlnctr.+2, 02 say 'Total shipment:'
@ mlnctr+2, 22 say totaiship
@ rnlnctr+3, 02 say 'Balance of ship:'
* mlnctr+3, 22 say balofship
@ mlnctr+4, 02 say 'L/C number:'
@ mlnctr+4, 22 say Icnumber
@ rnlnctr+5, 02 say 'L/C expire date:'
0 rnlnctr+5, 22 say lcexpdate
@ mlnctr+6, 02 say 'L/C shipment date:'
* mlnctr+6, 22 say Icshipdate
@ mlnctr+7, 02 say 'L/C amount:'
@ nilnctr+7, 22 say Icarnount
@ mlnctr+8, 02 say 'L/C balance:'
@ mlnctr+8, 22 say lcbal
@ mlnctr+9, 02 say 'Issue Bank:'
@ mlnctr+9, 22 say issuebank
@ mlnctr+10, 02 say 'Draw Bank:'
@ minctr+10, 22 say drawbank
0 mlnctr+11, 02 say 'Miti number:'
0 mlnctr+ 11,22 say mitino
0 mlnctr+12, 02 say '* of shipment made:'
* rnlnctr+12, 22 say nof shipment
return

< End of SALEPRT. PRG >

175,

*Program CONTRACT.- FMT ------called from NEWSALE. PRG
@ 01,05 say date()
@ 01,15 say 'NEW SALE CONTRACT DATA ENTRY SCREEN'
@ 02,15 say '- - - - - - - - - - -

@ 04,05 say 'Sale Number: 'get msnumber pict;
'xxxxxxxxxxxx'

0 05,05 say 'Customer Name: 'get mcname pict;
xxxxxxxxxxxxxxxxxxxxxxxx

@ 06,05 say 'Customer Address: 'get mcustaddr pict;
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXxxxxXXXXXXX

@ 07,05 say 'Customer Phone*: 'get mphoneno pict;
'(xxx)xxx-xxxx'

@ 08,05 say 'Contract Date: 'get mcontrdate pict;
Ixx/xx/xx'

0 09,05 say 'Commodity: 'get mcommodity pict;
XXxxXXX~XXXX

*@ 10, 05 say 'Price Base: ' get mpricebase pict;

@ 12,05 say 'L/C Number: 'get mlcnumber pict;
'xxxxxxxxxxxx,

0 13,05 say 'L/C Exp. Date: 'get mlcexpdate pict;
S AA(A/xxxx

@ 14,05 say 'L/C Ship Date: 'get mlcshipdate pict;
'xx/xx/xx'

@ 15,05 say 'L/C Bale: 'get mlcbal pict;
'9999999999999.99'

@ 16,05 say 'L/C Amount: 'get micamount pict;
'9999999999999.99'

@ 17,05 say 'Issue Bank: get missuebank pict;
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxx,

@ 18,05 say 'Draw Bank: ' get mdrawbank pict;
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxx'

@ 19,05 say 'Miti Number: ' get mmtmno pict;
xxxxxxxxxxxxxxxxxx,

a '"7,05 3iay--,ave all fields blank, and =EURN to ~~-
< nd rf MNTRACT ?'MT >

176

.~'..d. - -~ - .L9

Program SSHIPMENT. FMT ----- called from S_SHIPIN. PRG
@ 02,01 say date()
@ 02,15 say 'NEW SALE SHIPMENT DATA ENTRY SCREEN'
@03,15 say.
@ 06,05 say 'Sale Number:' get msnumber pict;

'xxxxxxxxxxxx'
@ 07,05 say 'Customer Name: ' get mname pict;

'xxxxxxxxxxxxxxxxxxxxxxxxx-

@ 08,05 say 'Origin: ' get morigin pict;
'xxxxxxxxxxxxxxxxxxxxxxxxx,I '.XXXXXXXXXXXX ."

@ 09,05 say 'Destination: ' get mdest pict;
'xxxxxxxxxxxxxxxxxxxxxxxxx,

@ 10,05 say 'Estimate Date: ' get metd pict 'xx/xx/xx'
@ 11,05 say 'Invoice Date: get minvdate pict 'xx/xx/xx'
@ 12,05 say Container Data Entry - -

@ 13,05 say 'Invoice Number: ' get minvolceno pict;
'xxxxxxxxxxxxxxx' ,

@ 14,05 say 'Container Number: ' get mcnumber pict;
xxxxxxxxxxxx

@ 15,05 say 'Bales: get mbales pict;
'9999999999999.99'

@ 16,05 say 'Net: ' get mnet pict;
'9999999999999.99'

@ 23,05 say '--Leave all fields blank, and RETURN to exit--'
< End of SSHIPMENT.FMT >

177

:,- ... , ..- ,:. ,,",<.: ,:.::... . -.,. -'< 4,4 ".- : ,' . ".':":.;. < . .4 . -:- ,. '3. -'3 : , ---- ". ..-.. . : -.-. v ,-,-.

Program TOFSHIP. FMT----- called from NEWSALE. PRG
@ 01,05 say dateO
@ 01, 15 say 'TIME OF SHIPMENT DATA ENTRY SCREEN'
@ 02,15 say'---- - -- -
@ 04,05 say 'Month: get mmonth pict '99'
0 05,05 say 'Weight: ' get mwgt plct '9999999999999.99'
0 06,05 say 'Bales: ' get mbal plct '9999999999999.99'
0 07,05 say 'Unit Price: ' get munitprice pict '9999999999999.99'
* 23,05 say '--Leave all fields blank, and RETURN to exit--'
* < End of TOFSHIP.FMT >

J,

Program CONTFMT.FMT ----- called from S..SHIPIN.PRG
0 02,01 say date -
0 02,15 say' MORE CONTAINER DATA ENTRY SCREEN'
@ 03,15 say'
@ 06,05 say 'Container Number: ' get mcnumber pict;

xxxxxxxxxxxx-
@ 07,05 say 'Invoice Number: ' get minvoiceno pict;

'xxxxxxxxxxxxxxx
* 08,05 say 'Bales: ' get mbales pict;

'9999999999999.99'
@ 09,05 say 'Net: ' get mnet pict;

'9999999999999.99'
@ 23,05 say '--Leave all fields blank, and RETURN to exit--'
S< End of CONTFMT. FMT >

178

%'2

• Program PURCHASE ----- called from HANAOKA
set talk off
set bell off
set dele on
set exact on

do while .T.
clear
store ' to mchoice
@02,15 say
@03,15 say
@ 04,15 say '- HANAOKA Purchase Information
005,15 say ... -
@ 06,15 say'..............
* 08,15 say 1. New Purchase Contract Entry'
@ 10, 15 say 2. New Purchase Shipment Entry'
@ 12,15 say 3. Purchase Information Inquery'
@ 14,15 say 4. Quit'
@ 18,15 say Choose one function -- >(1,2,3,4)' get mchoice;

pict 'x'
read
do case

case mchoice = '1'
do newpurch

case mchoice = '2'
do pshipin

case mchoice = '3'
do p-inquer '

otherwise
return

endcase
enddo
S< End of PURCHASE >

179

Program NEWPURCH. PRG ----- called from PURCHASE. PRG
public mtotalship, mnofshipmnt, mpnumber
do while .T.

store space(12) to mpnumber
store space(25) to mfnamestore space(50) to mcommodity, readdress
store space(13) to mphoneno
store space(8) to mcontrdate
store 0 to mtotalship
store 0 to mbalofshlp
store 0 to mnofshipmnt
store . T. to nogood, notok
store to manswer

do while notok
do while nogood

set confirm on
set format to contrap
read
if mpnumber =

set format to
set confirm off
use
close index
return

endif
use b: pcontract index b: p-conindx
find &mpnumber
if found()

? chr(7)
@ 06,50 say 'Duplicate key'
@ 24,10 say 'Replace? Discard? Inquery?(RDl)-->';

get manswer pict 'x'
read
if upper(manswer) = 'R'

store F. to nogood
C 24,10 say

endif
if upper(manswer) =

use
close index
do p.inquer
return

endif

180

else
store F. to nogood
set format to

endif
enddo
store to manswer
@ 24,15 say 'Input OK?(Y/N)-->' get manswer pict 'x'
read
If upper(manswer) = 'Y'

store .F. to notok
else

store . T. to nogood
endif
enddo

do tmship
use
close index
use b: pcontract index b: pconindx

append blank
replace pnumber with mpnumber
replace f name with mfname
replace contrdate with mcontrdate
replace commodity with mcommodity '

replace totalship with mtotalship
replace balofship with mbalof ship
replace nofshipment with mnofshipmnt

use
close index

use b: farmer index b: farmerdx
find &mfname
if . NOT. found()

append blank
replace fname with mfname
replace address with maddress
.:eplace phoneno with rnphoneno

ondif
use
close index
enddo
S< End of NEWPURCH.PRG >

181r
{~:- L~K ~ z~z i ~.. . " ."

* Program PSHIPIN. PRG ----- called from PURCHASE. PRG

clear
store . T. to nogood
public mshipno, mpnumber, mcost, mtotalbales, mtotalnet
public mtruckcost, mcompute, mnet, mcutpntwgt, mrateacut
public mratebcut, mcost, mbales
do while .T.
clear
store space(12) to mshipno, mpnumber
store space(12) to mwgtticket, mcontrno
store space(8) to mmthday
store 0 to mbales, mnoftruck
store 0 to mnet, mcost, mratebcut
store 0 to mrateacut
store 0 to mtotalbales, mshiplntons
store 0 to mtotalnet, mcutpntwgt
store 0 to mpayment, mtruckcost
store I I to mcompute, manswer

@ 12,30 say
accept Contract number:' to mcontrno
if mcontrno =

return
endif
select 2
use b: pcontract index b: pconindx
find &mcontrno
if found 0

clear
set confirm on
do while nogood
set format to pshipin
read
if mpshipno =

set format to
set confirm off
return

endif
@ 23,15 say'"
accept ' Input OK?(Y/N)-->' to manswer
if upper(manswer) = IT

store ' ' to manswer
91 24,15 say
store .F. to nogood

182

do pcompute
use b: truck index b: truckndx
append blank
replace pshipno with mpshlpno
replace pnurnber with rncontrno
replace mthday with mmthday
store space(8) to mmthday
replace wgtticketno with mwgtticket
store space(12) to mwgtticket
replace bales with mbales
store mtotalbales+mbales to mtotalbales
store 0 to mbales
replace net with mnet
store rntotalnet+rnnet to mtotalnet
store 0 to mnet
replace cost with rncost
store mtruckcost+mcost to mtruckcost
store 0 to mcost
use
close index
@ 23,15 say
accept 'More trucks? (Y/N)-->' to manswer
if upper(manswer) 'Y

do truckin
endif

endif
enddo
use
close index

store mtotalnet/2000. 0 to mshipintons
use b: tofship index b: tshipndx
do while .NOT. eofo.

If pnumber=rncontrno
if month = substr(mthday, 1,2)

store bal-mshipintons to bal
store mshipintonsaunitprice to mnpayment

endif
endif
skip

enddo
use
close index
use b: pcontract index b: p..conindx
do while .NOT. eof()

183

if pnumber = mcontrno
store balofship-mshipintons to balofship

endif
skip

enddo
use
close index
use b: p.shipment Index b: pshlpndx
append blank

replace pshipno with mpshipno
replace pnumber with mcontrno
replace noftruck with mnoftruck
replace totalbales with mtotalbales
replace totalnet with mtotalnet
replace payment with mpayment
replace truckcost with mtruckcost
use
close index

else
clear
? chr(7)
@ 12,25 say 'No such contract in the file !!'
@ 24,15
wait

endif
enddo

< End of PSHIPIN.PRG >

184

• .. w • ~~~~~ ~~~~..- . ., °.m
' t P " . . S " A ," . ,- -" .* . . . f. a I .. - , , . - - - -t . o ~, .. .- f ... - . - , . . - . .

Program TRUCKIN. PRG ----- called from P.SHIPIN. PRG 4*

use
close index
use b: truck index b: truckndx
store. T. to mmore
do while mmore
clear
store to manswer
set confirm on
set format to truckfmt
read
if mwgtticket =

set format to
set confirm off
use
close Index
return

endif
@ 23,15 say
accept Input OK?(Y/N)-->' to manswer

if upper(manswer) ='Y'
store ' to manswer
append blank
replace pshipno with mpshipno
replace pnumber with mpnumber
replace mthday with mmthday
replace wgtticketno with mwgtticket
repalce bales with mbales
replace net with mnet

do pcompute

replace cost with mcost -4
store mtotalbales+mbales to mtotalbales
store 0 to mbales
store rntotalnet+rnnet to rntotalnet
store 0 to mnet
store mnoftruck+1 to mnoftruck
store mtruckcost+mcost to mtruckcost

r 24, 15 say
@ 23,15 say
accept More trucks?(Y/N)-->' to manswer

185

e e

if upper(manswer) = 'N'
store F. to mmore
@ 24,15 say

endif
store ' to manswer

endif
enddo
use
close index
return
* < End of TRUCKIN. PRG >

186

'I
S Program P-INQUER. PRG ----- called from HANAOKA. PRG or

from NEWPURCH. PRG or
from PSHIPIN. PRG

public mcontrno
do while . T.
clear store ' ' to mchoice, manswer
store ' to mcommoname
store ' to mcontrno, mshipno
@ 02,15 say'..............-- - -.-
@ 03,15 say =-
@ 04,15 say '= Purchase Information Inquery
@ 05,15 say '= ='
@ 06,15 say- -
@ 08,15 say 1. List all commodities'
@ 10,15 say 2. List all contract of one farmer'
* 12,15 say 3. List one purchase contract info.'
@ 14,15 say 4. Quit'
@ 20,15 say Choose one function -- >(1,2,3,4)' get;

mchoice pict 'x'
read
do case

case mchoice = '1'
clear
@ 02,15 say '--...List of all commodities
use b: pcontract index b: p-conindx
display all commodity off
wait
use
close index

case mchoice = '2'
clear
@ 02,15 say "Farmer's name:" get mcommoname pict;

'xxxxxxxxxxxxxxxxxxxxxxxxx'

read
@ 03, 15 say 'Contract with
@ 03,32 say mcommoname
use b: pcontract index b: pconindx
display all pnumber, commodity for fname=mcommoname;

of f
wait
use
close index

187

case mcholce = '3'
clear
@ 02,15 say 'Contract Number:' get mcontrno pict;

'xxxxxxxxxxxx'

read
if mcontrno =

return
endif
use b:p-contract index b: pconindx
find &mcontrno
if found()

use
close index
do purlist
@ 24,15 say 'Need a printout?(Y/N)-->' get manswer;

pict x'
read
if upper(manswer) = 'Y'

@ 24,15 say 'Turn on the printer,'
wait
set device to print
do purlist
set device to screen

endif
store ' ' to manswer
use
close index
clear
* 12,15 say 'See all shipments in sequence? (Y/N)';

get manswer pict 'x'
read
if upper(manswer) = YI

do pshlist
@ 24,15 say 'Need a printout?(Y/N)' get manswer;

pict 'x'
read
i; upper(manswer) = 'Y'

set device to print
do psh ist
set device to screen

endif
endif
store ' to manswer

else
0 15,20 say 'No such contract in the file!!'

188

? chr(7)
endif
use
close index

case mchoice = '4'
return

endcase
enddo 4.

S< End of PINQUER. PRG >

.8'e.

.

'1|

'.

.5.

189

* 4. .. * 4. ~ ~ 54 ~ .~ ~ ~ 9 4.4.4 .. 4. *..~-X . ~*J... ...

* Program TMSHIP. PRG ----- called from NEWPURCH. PRG
clear
store space(2) to mmonth
store 0 to mwgt, mbal, munitprice
store to manswer
store T. to mcontinue
use b: tofship index b: tshipndx

do while mcontinue
set confirm on
set format to tofship
read
if mmonth =

set format to
use %
close index %

return
else

? chr(7)
@ 2 1, 15 say
accept 'Input OK?(Y/N)-->' to manswer
if upper(manswer) lye

append blank
replace month with mmonth
store to mmonth
replace pnumber with mpnumber
replace wgt with mwgt
replace bal with mbal
store 0 to mbal
replace unitprice with munitprice
store 0 to munitprice
store to manswer
store mtotalship+mwgt to mtotalship "
store 0 to mwgt
store mnofshipmnt+l to mnofshipmnt

endif
endif

enddo
* < End of TMSHIP.PRG >

190

Ile-a--;- :

program PURLIST. PRG ----- called from PINQUER. PRG
clear
store space(25) to mfname
store ' ' to mlnctr
select 2
use b: p.contract index b: p._conindx
find &mcontrno
0 01,02 say '=== Feed Stuff Purchase Contract Information ==='
0 02,02 say 'Purchase number:' ,
* 02,21 say pnumber
0 03,02 say 'Contract date:'
0 03,21 say contrdate
* 04,02 say 'Farmer name:'
@ 04,21 say fname
store fname to mfname
select 3
use b: farmer index b: farmerdx
find &mfname
@ 05,02 say 'Address:'
@ 05,21 say address
select 2
* 06,02 say 'Commodity:'
@ 06,21 say commodity
0 07,02 say 'Time of shipment: Month Quantity Balance
Unitprice'
store 8 to mlnctr
select 4
use b: tofship index b: tshlpndx
do while .not. eof0

if pnumber = mcontrno
@ minctr,49 say unltprce
* mlnctr, 35 say bal
@ mlnctr, 22 say wgt
@ mlnctr, 20 say month
store mlnctr+l to mlnctr

endif
skip

enddo
select 2
0 mlnctr+2,02 say 'Total Shipment:'
* mlnctr+2,21 say totalship
@ mlnctr+3,02 say 'Balance of shipment:'
@ mlnctr+3,21 say balofship
@ mlnctr+4,02 say ' # of shipments made:'

191

0 mlnctr+4, 21 say nofshipment
eject
use
close index
return
S< End of PURLIST.PRG >

* Program PSHLIST.PRG ----- called from PINQUER. PRG
clear
store 0 to mlnctr
store space(12) to mshipno
select 2
use b: p-shipment index b: pshipndx
select 3
use b: truck index b: truckndx
select 2
store .T. to notdone
do while . not. eof0 . and. notdone

if pnumber = mcontrno
0 01,02 say 'Shipment No:'
0 01,21 say pshipno
store . F. to notdone

endif
skip

enddo
store pshipno to mpshipno
@ 02,02 say 'Date Wgt tkt* Bales Netwgt Cost'
store 3 to mlnctr
select 3
do while .not. eofO

if pnumber = mcontrno
0 mlnctr, 01 say mthday
@ mlnctr, 09 say wgtticketno
@ mlnctr,21. say bales
O mlnctr, 40 say net
@ mlnctr, 55 say cost
store mlnctr+l to mlnctr

endif
skip

enddo

192

' , ' - It~ &,.- # I IWW -. .- W k' wI i II , I i

select 2
@ mlnctr+l, 02 say 'Total Bales:'
@ mlnctr+1, 21 say totlabales
@ mlnctr+2,02 say 'Total Net:'
@ mlnctr+2,21 say totalnet
@ mlnctr+3,02 say 'Payment:'
@ rnlnctr+3,21 say payment
@ mlnctr+4,02 say 'Truck Cost:'
@ rnlnctr+4,21 say truckcost
eject
use
close index
return
< End of PSHLIST. PRG >

193

Lt 4

I t-R194 62? COMPRAISON OF PRSCRL RNO THE DIASE III PLUS LANGUAGE IN 3/'
PROGRAMMING AN INVENTORY ANAGEMENT SYSTEM(U) N ,AYAL
POSTGRADUATE SCHOOL MONTEREY CR T CHANG JUN 9?

UNCLASSIFIED F/O 12/5 NLmElmmmEmmm,

1.151.

M~r.RnenWY RFC" I ITIOf TEST CHART

w -71 a - .4 1w -IV - 3 3 3 w
V vm

V~w mr-WWRP&M ~rK Pa rwrrwf~wrtrv~w FI N

SProgram PCOMPUTE. PRG ------called from P-SHIPIN. PRG
if upper(mcompute) = 'Sm

if (rnnet/2000. 0) < mcutpntwgt
store (mnet/2000. 0)*mratebcut to mcost

else
store (mnet/2000. 0)*mrateacut to mcost

endif
else

if mbales < mcutpntwgt
store mratebcut to mcost

else
store (mbales/mcutpntwgt)*mrrateacut to mcost

endif
endif
return

< <End of PCOMPUTE. PRG >

194V

* program CONTRAP. FMT ---- called from NEWPURCH.PRG
0 02,01 say date()
* 02,15 say 'NEW PURCHASE CONTRACT DATA ENTRY SCREEN'
* 03,15 say '-.............
@ 06,05 say 'Purchase Number:' get mpnumber pict;

'xxxxxxxxxxxxA

* 07,05 say 'Farmer name: ' get mfname pict;
'xxxxxxxxxxxxxxxxxxxxxxxxx'

0 08,05 say 'Farmer address: ' get readdress pict;
'XXX

* 09,05 say 'Farmer phone*: ' get mphoneno pict;
'(xxx)xxx-xxxx'

0 10,05 say 'Contract date: ' get mcontrdate pict;
'xx/xx/xx'

* 11,05 say 'Commodity: ' get mcommodity pict;
'xxx'

* 12,05 say 'Total shipment: ' get mtotalship pict;
'9999999999999.99'

* 13,05 say 'Bales of shipment: ' get mbalofship pict;
'9999999999999.99'

@ 20,05 say '--Leave all fields blank, and <CR> to exit--'
S< End of CONTRA..P.FMT >

195

I

~ tC~C.

Program PSHIPIN. FMT ----- called from PSHIPIN. PRG
* 02,01 say dateO
0 02,15 say 'NEW PURCHASE SHIPMENT DATA ENTRY SCREEN'
@ 03,15 say'......- -------- ,
* 06,05 say 'Shipment Number:' get mshipno pict 'xxxxxxxxxxxx'
* 07,05 say 'Cutting point Wgt: ' get mcutpntwgt pict;

'9999999999999.99'
0 08,05 say 'Rate below cut point:' get mratebcut pict;

'9999999999999.99'
* 09,05 say 'Rate above cut point:' get mrateacut pict;

'9999999999999.99'
@ 13,15 say' NEW TRUCKS DATA ENTRY SCREEN' *1i

@ 14,15 say'- - - -- -
9 16,05 say 'Date: get mmthday pict 'xx/xx/xx'
* 17,05 say 'Wgt Ticket : ' get mwgtticket pict 'xxxxxxxxxxxx'
* 18,05 say 'Bales: ' get mbales pict '9999999999999.99'
* 19,05 say 'Net: ' get mnet pict '9999999999999.99'
* 20,05 say 'Trucking rate computation by shorttons/bales(S/B)';

get mcompute pict 'x'
* 23,05 say '--Leave all fields blank, and <CR> to exit--'

< End of PSHIPIN. FMT >

.9

.1

196 "

2 ,

P Program TRUCKFMT. FMT ----- called from PSHIPIN. PRG
002,01 say dateO
* 02,15 say' MORE TRUCKS DATA ENTRY SCREEN'
(03,15 say- -..- -- ' ,
* 05,05 say 'Date: 'get mmthday pict 'xx/xx/xx'
* 06,05 say 'Wgt Ticket #" 'get mwgtticket pict 'xxxxxxxxxxxx'
* 07,05 say 'Bales: ' get nbales pict '9999999999999.99'
9 08,05 say 'Net: ' get mnet pict '9999999999999.99'
023,05 say '--Leave all fields blank, and <CR> to exit--'
S< End of TRUCKFMT. FMT >

1.

197

V ~ a. %;~I~%~\Ja !

*Program TOFSHIP. FMT ------called from NEWPURCH. PRG
* 01,05 say dateQ
0 01, 15 say 'TIME OF SHIPMENT DATA ENTRY SCREEN'
* 02,15 say'------ -----

0 04,05 say 'Month: get mmonth pict '99'
*005,05 say 'Weight: get mwgt pict '9999999999999.99'
* 06,05 say 'Bales: 'get mbal pict '9999999999999.99'
* 07,05 say 'Unit Price: 'get munitprice '9999999999999.99'
0 23,05 say '--Leave all fields blank, and <CR> to exit--'

< <End of TOFSHIP.FMT >

1198

WillV4~'

LIST OF REFERENCES

1. Barston, David R., Interactive Programming Environment.

McGraw Hill, Inc., 1984.

2. Welderhold, Gio, Database Design, McGraw Hill, 1977.

3. Senn, James A., Information Systems in Management,
Wadsworth Publishers, 1982.

4. Ullman, Jefferey D., Database Systems, Computer Software
Engineering Series, 1982.

5. Luls Castro, Jay Hanson and Tom Retting., Advanced
Programmer's Guide. featurinix dBasell and dBase III, Ashton
Tate, 1985.

6. Bharucha, Kerman D., dBase III PLUS - A Comprehensive
User's Manual, Tab Books Inc., 1986.

7. Jenkins, David., dBase III - Tins And Tricks, Hayden Book
Company, 1986.

8. MacLennan, Bruce J., Princioles Of Prggramming Languages
Design. Evaluation, and Imglementation, Holt, Rinehart and
Winston, 1983.

9. Koffman, Elliot B., Problem Solving And Structured
Programming In Pascal, Addison Wesley Publishing Company,
1985.

10. Apple Computer, A22le II Instant Pascal Language Reference
Manual, Addison Wesley Publishing Company Inc., 1985.

11. C. Wu, Thomas , Introduction To Database Systems, CS 4300
Course Notes, 1986.

12. C. Wu, Thomas , Advanced Database Systems, CS 4312 Course
Notes, 1987.

13. Fairley, Richard, Software Engineering Conce=ts, MacGraw HillZ

Inc., 1985.

199

14. Date, C. J., An Introduction To Database Systems, Addison
Wesley Publishing Company, 1986.

15. Kroenke, David, Database Processing Fundamentals. Design.
Implementation,

16. Inmon, William H., Effective Database Desi. Prentice-Hall
Inc., 1981.

17. Glass, Robert L., Noiseux Ronald A., Software Maintenance
G Prentice-Hall Inc., 1981.

18. Boehm et al., Characteristics of Software Quality TRW
Systems and Energy, Inc., North-Holland Publishing Company,
1978.

19. Computer Science & Technology, Performance Assurance and
Data Integrity Practices U.S. Department of Commerce,
National Bureau of Standards, 1978.

20. Relue, Richard B., Cornnarison Of Microcomouter Based
Database Management Masters Thesis, Naval Postgraduate
School, June, 1982.

21. Sivasankaran, T.R., IS 4183 Course Notes, 1987.

200
..................................

INITIAL DISTRIBUTION LIST

No. Copies

1. Defense Technical Information Center 2
Cameron Station
Alexandria, Virginia 22304-6145

2. Chief Of Naval Operations 2
Director, Information Systems (OP-945)
Navy Department
Washington, D.C. 20350-2000

3. Library, Code 0142 2
Naval Postgraduate School
Monterey, California 93943- 5002

4. Computer Technology Curricular Office 1
Naval Postgraduate School
Code 37
Monterey, California 93943

5. Department Chairman 1
Computer Science Department
Code 52
Naval Postgraduate School
Monterey, California 93943

6. Prof. C. Thomas Wu, Code 52 WQ 5
Naval Postgraduate School
Monterey, California 93943

7. Library, 2
Chinese Naval Academy
Tsoa-ying District
Kaohsiung City
Taiwan, Republic of China

8. Major To Chang 3
No. 1-1, Lane 10, Kuo-Chan Rd.
Feng Shan City
Taiwan, Republic of China

201

. -..-.- . ra ,, ,S . : k,.-../ ,:,S 5' ,r,5 .*' -,' .:""'"" ;" ""'*'' ' " " ',*', '' 5 "."."*?'' ' " "",

9. Anne Llang 1
3981 Hamilton St. *4
San Diego, CA 92104

2S

i.

S-C.

V'

IS
5-

.o,-

5/

202

-mpw-low'w w_ w w -w '

